Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Eliciting Informative Feedback: The Peer-Prediction Method

  • Chapter
Computing with Social Trust

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

Many recommendation and decision processes depend on eliciting evaluations of opportunities, products, and vendors. A scoring system is devised that induces honest reporting of feedback. Each rater merely reports a signal, and the system applies proper scoring rules to the implied posterior beliefs about another rater’s report. Honest reporting proves to be a Nash Equilibrium. The scoring schemes can be scaled to induce appropriate effort by raters and can be extended to handle sequential interaction and continuous signals. We also address a number of practical implementation issues that arise in settings such as academic reviewing and on-line recommender and reputation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avery, C., P. Resnick, and R. Zeckhauser, 1999. “The Market for Evaluations”, American Economic Review, 89(3) 564–584.

    Google Scholar 

  2. Breese, J., D. Heckerman, C. Kadie. 1998. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publisher, Madison, WI, July, 1998.

    Google Scholar 

  3. Clemen, R. 2002. Incentive Contracts and Strictly Proper Scoring Rules. Test 11(1) 195–217.

    Article  MathSciNet  Google Scholar 

  4. Cooke, R. M. 1991. Experts in Uncertainty: Opinion and Subjective Probability in Science. Oxford University Press, New York.

    Google Scholar 

  5. Crémer, J., R. McLean. 1985. Optimal Selling Strategies Under Uncertainty for a Discriminating Monopolist When Demands Are Interdependent. Econometrica 53(2) 345–361.

    Article  MATH  MathSciNet  Google Scholar 

  6. Crémer, J., R. Mc Lean. 1988. Full Extraction of Surplus in Bayesian and Dominant Strategy Auctions. Econometrica 56 (6) 1247–1257.

    Google Scholar 

  7. d’Aspremont, C., L.-A. Gérard-Varet. 1979. Incentives and Incomplete Information. Journal of Public Economics 11(1) 25–45.

    Article  Google Scholar 

  8. d’Asprement, C.A., L.-A. Gérard-Varet. 1982. Bayesian Incentive Compatible Beliefs. Journal of Mathematical Economics 10(1) 83–103.

    Article  MathSciNet  Google Scholar 

  9. Dellarocas, C. 2001. Analyzing the Economic Efficiency of eBay-like Online Reputation Reporting Mechanisms. Proceedings of the 3rd ACM Conference on Electronic Commerce, Tampa, FL, October 14–16, 2001.

    Google Scholar 

  10. Friedman, D. 1983. Effective Scoring Rules for Probabilistic Forecasts. Management Science 29(4) 447–454.

    Article  MATH  Google Scholar 

  11. Gollier, C. 2001. The Economics of Risk and Time. MITPress, Cambridge, MA.

    MATH  Google Scholar 

  12. Hanson, R. 2002. Logarithmic Market Scoring Rules for Modular Combinatoral Information Aggregation. Working Paper, George Mason University Department of Economics, http://hanson.gmu.edu/mktscore.pdf.

  13. Jensen, F., C. Peterson. 1973. Psychological Effects of Proper Scoring Rules. Organizational Behavior and Human Performance 9(2) 307–317.

    Google Scholar 

  14. Johnson, S., N. Miller, J. Pratt, R. Zeckhauser. 2002. Efficient Design with Interdependent Valuations and an Informed Center. Kennedy School Working Paper, RWP02-025, http://ksgnotes1.harvard.edu/research/wpaper.nsf/rwp/RWP02-025.

  15. Johnson, S., J. Pratt, R. Zeckhauser. 1990. Efficiency Despite Mutually Payoff-Relevant Private Information: The Finite Case. Econometrica 58(4) 873–900.

    Article  MATH  MathSciNet  Google Scholar 

  16. Kandori, M., H. Matsushima. 1998. Private Observation, Communication and Collusion. Econometrica 66(3) 627–652.

    Article  MATH  MathSciNet  Google Scholar 

  17. Lampe, C., P. Resnick. 2004. Slash(dot) and Burn: Distributed Moderation in a Large Online Conversation Space. CHI 2004, ACM Conference on Human Factors in Computing Systems, CHI Letters 6(1), 543–550.

    Article  Google Scholar 

  18. Lavalle, I. 1968. On Cash Equivalents and Information Evaluation in Decisions Under Uncertainty: Part I: Basic Theory. Journal of the American Statistical Association 63(321) 252–276.

    Article  MathSciNet  Google Scholar 

  19. Miller, N., P. Resnick, R. Zeckhauser. 2005. A sufficient condition for correlated information in mechanism design.mimeo, Harvard University, Cambridge, MA.

    Google Scholar 

  20. Nau, R. 1985. Should Scoring Rules Be Effective? Management Science 34(5) 527–535.

    Article  MathSciNet  Google Scholar 

  21. Nelson, R., D. Bessler. 1989. Subjective Probabilities and Scoring Rules: Experimental Evidence. American Journal of Agricultural Economics 71(2) 363–369.

    Article  Google Scholar 

  22. Ottaviani, M., P. N. Sørensen. 2003. Professional Advice: The Theory of Reputational Cheap Talk.Working Paper, University of Copenhagen, http://www.econ.ku.dk/sorensen/ Papers/pa.pdf.

  23. Pratt, J., H. Raiffa, R. Schlaifer. 1965. Introduction to Statistical Decision Theory. McGraw-Hill, New York.

    Google Scholar 

  24. Prelec, D. 2001. A two-person scoring rule for subjective reports. Working Paper, Marketing Center, MITSloan School, http://mitsloan.mit.edu/vc/IPPacket.pdf.

  25. Prendergast, C. 1993. A Theory of Yes Men. American Economic Review 83(4) 757–770.

    Google Scholar 

  26. Roth, A. 1995. Introduction to Experimental Economics. J. Kagel, A. Roth, eds. The Handbook of Experimental Economics, Princeton University Press, Princeton, NJ, 3–110.

    Google Scholar 

  27. Sarwar, B. M., G. Karypis, J. A. Konstan, J. Riedl. 2000. Analysis of Recommender Algorithms for E-Commerce, Proceedings of the ACM E-Commerce 2000 Conference, Oct. 17–20, 2000, 158–167.

    Google Scholar 

  28. Savage, L. 1954. Foundations of Statistics. Dover Publications, New York.

    MATH  Google Scholar 

  29. Savage, L. 1971. Elicitation of Personal Probabilities and Expectations. Journal of the American Statistical Association 66(336) 783–801.

    Article  MATH  MathSciNet  Google Scholar 

  30. Selten, R. 1998. Axiomatic Characterization of the Quadratic Scoring Rule. Experimental Economics 1(1) 43–62.

    MATH  MathSciNet  Google Scholar 

  31. Smith, C. 1961. Consistency in Statistical Inference and Decision. Journal of the Royal Statistical Society, Series B (Methodological) 23(1) 1–37.

    MATH  MathSciNet  Google Scholar 

  32. Staël von Holstein, C.-A. 1970. Measurement of Subjective Probability. Acta Psychologica 34(1) 146–159.

    Google Scholar 

  33. Winkler, R. 1969. Scoring Rules and the Evaluation of Probability Assessors. Journal of the American Statistical Association 64(327) 1073–1078.

    Article  Google Scholar 

  34. Winkler, 1996. Scoring Rules and the Evaluation of Probabilities. Test 5(1) 1–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Miller, N., Resnick, P., Zeckhauser, R. (2009). Eliciting Informative Feedback: The Peer-Prediction Method. In: Golbeck, J. (eds) Computing with Social Trust. Human–Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84800-356-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-356-9_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-355-2

  • Online ISBN: 978-1-84800-356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics