Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Solving Parameterised Boolean Equation Systems with Infinite Data Through Quotienting

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11222))

Included in the following conference series:

Abstract

Parameterised Boolean Equation Systems (PBESs) can be used to represent many different kinds of decision problems. Most notably, model checking and equivalence problems can be encoded in a PBES. Traditional instantiation techniques cannot deal with PBESs with an infinite data domain. We propose an approach that can solve PBESs with infinite data by computing the bisimulation quotient of the underlying graph structure. Furthermore, we show how this technique can be improved by repeatedly searching for finite proofs. Unlike existing approaches, our technique is not restricted to subfragments of PBESs. Experimental results show that our ideas work well in practice and support a wider range of models and properties than state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We remark that termination is not guaranteed as not every infinite dependency graph has a finite bisimulation quotient.

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D., Wong-Toi, H.: Minimization of timed transition systems. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 340–354. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0084802

    Chapter  Google Scholar 

  2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_7

    Chapter  Google Scholar 

  3. Bouajjani, A., Fernandez, J.-C., Halbwachs, N., Raymond, P., Ratel, C.: Minimal state graph generation. Sci. Comput. Programm. 18(3), 247–269 (1992)

    Article  MathSciNet  Google Scholar 

  4. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking for infinite systems using parameterized boolean equation systems. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8_9

    Chapter  Google Scholar 

  5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_15

    Chapter  Google Scholar 

  6. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_15

    Chapter  MATH  Google Scholar 

  7. Cranen, S., Keiren, J.J.A., Willemse, T.A.C.: A cure for stuttering parity games. In: Roychoudhury, A., D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 198–212. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32943-2_16

    Chapter  Google Scholar 

  8. Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised boolean equation systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 470–484. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8_33

    Chapter  Google Scholar 

  9. Fisler, K., Vardi, M.Y.: Bisimulation and Model Checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 338–342. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2_29

    Google Scholar 

  10. Fontana, P., Cleaveland, R.: The power of proofs: new algorithms for timed automata model checking. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 115–129. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_9

    Chapter  MATH  Google Scholar 

  11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

    Article  Google Scholar 

  12. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor. Comput. Sci. 343(3), 332–369 (2005)

    Article  MathSciNet  Google Scholar 

  13. Hesselink, W.H.: Invariants for the construction of a handshake register. Inf. Process. Lett. 68(4), 173–177 (1998)

    Article  Google Scholar 

  14. Kant, G., van de Pol, J.: Efficient instantiation of parameterised boolean equation systems to parity games. In: GRAPHITE 2012, volume 99 of EPTCS, pp. 50–65 (2012)

    Article  Google Scholar 

  15. Keiren, J.J.A., Wesselink, W., Willemse, T.A.C.: Liveness analysis for parameterised boolean equation systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 219–234. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_16

    Chapter  MATH  Google Scholar 

  16. Keiren, J.J.A., Willemse, T.A.C.: Bisimulation minimisations for boolean equation systems. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 102–116. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19237-1_12

    Chapter  Google Scholar 

  17. Knuth, D.E.: Textbook examples of recursion. Artif. Math. Theory Comput. 91, 207–229 (1991)

    Article  MathSciNet  Google Scholar 

  18. Koolen, R.P.J., Willemse, T.A.C., Zantema, H.: Using SMT for solving fragments of parameterised boolean equation systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 14–30. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_3

    Chapter  MATH  Google Scholar 

  19. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Commun. ACM 17(8), 453–455 (1974)

    Article  MathSciNet  Google Scholar 

  20. Lee, D., Yannakakis, M.: Online minimization of transition systems (extended abstract). In: STOC 1992, pp. 264–274 (1992)

    Google Scholar 

  21. Nagae, Y., Sakai, M.: Reduced dependency spaces for existential parameterised boolean equation systems. In: WPTE 2017, volume 265 of EPTCS, pp. 67–81 (2018)

    Article  MathSciNet  Google Scholar 

  22. Nagae, Y., Sakai, M., Seki, H.: An extension of proof graphs for disjunctive parameterised boolean equation systems. In: WPTE 2016, volume 235 of EPTCS, pp. 46–61 (2017)

    Article  MathSciNet  Google Scholar 

  23. Neele, T., Willemse, T.A.C., Groote, J.F.: Solving Parameterised Boolean Equation Systems with Infinite Data Through Quotienting (Technical Report). Technical report, Eindhoven University of Technology (2018)

    Google Scholar 

  24. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0017309

    Chapter  Google Scholar 

  25. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimulations. FMSD 18(1), 25–68 (2001)

    MATH  Google Scholar 

  26. Willemse, T.A.C.: Consistent correlations for parameterised boolean equation systems with applications in correctness proofs for manipulations. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 584–598. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_40

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their constructive feedback. Their suggestions helped us to improve the paper before publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Neele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neele, T., Willemse, T.A.C., Groote, J.F. (2018). Solving Parameterised Boolean Equation Systems with Infinite Data Through Quotienting. In: Bae, K., Ölveczky, P. (eds) Formal Aspects of Component Software. FACS 2018. Lecture Notes in Computer Science(), vol 11222. Springer, Cham. https://doi.org/10.1007/978-3-030-02146-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02146-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02145-0

  • Online ISBN: 978-3-030-02146-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics