Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Challenges in Community Discovery on Temporal Networks

  • Chapter
  • First Online:
Temporal Network Theory

Part of the book series: Computational Social Sciences ((CSS))

Abstract

Community discovery is one of the most studied problems in network science. In recent years, many works have focused on discovering communities in temporal networks, thus identifying dynamic communities. Interestingly, dynamic communities are not mere sequences of static ones; new challenges arise from their dynamic nature. Despite the large number of algorithms introduced in the literature, some of these challenges have been overlooked or little studied until recently. In this chapter, we will discuss some of these challenges and recent propositions to tackle them. We will, among other topics, discuss of community events in gradually evolving networks, on the notion of identity through change and the ship of Theseus paradox, on dynamic communities in different types of networks including link streams, on the smoothness of dynamic communities, and on the different types of complexity of algorithms for their discovery. We will also list available tools and libraries adapted to work with this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/GiulioRossetti/cdlib/tree/master/cdlib.

  2. 2.

    https://github.com/benmaier/tacoma.

References

  1. Aynaud, T., Guillaume, J.L.: Static community detection algorithms for evolving networks. In: Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 513–519. IEEE, Piscataway (2010)

    Google Scholar 

  2. Aynaud, T., Guillaume, J.L.: Multi-step community detection and hierarchical time segmentation in evolving networks. In: Proceedings of the 5th SNA-KDD Workshop (2011)

    Google Scholar 

  3. Bazzi, M., Jeub, L.G., Arenas, A., Howison, S.D., Porter, M.A.: Generative benchmark models for mesoscale structure in multilayer networks. arXiv preprint arXiv:1608.06196 (2016)

    Google Scholar 

  4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10,008 (2008)

    Article  Google Scholar 

  5. Boudebza, S., Cazabet, R., Azouaou, F., Nouali, O.: Olcpm: an online framework for detecting overlapping communities in dynamic social networks. Comput. Commun. 123, 36–51 (2018)

    Article  Google Scholar 

  6. Cazabet, R., Amblard, F.: Dynamic community detection. In: Encyclopedia of Social Network Analysis and Mining, pp. 404–414. Springer, Berlin (2014)

    Google Scholar 

  7. Cazabet, R., Amblard, F., Hanachi, C.: Detection of overlapping communities in dynamical social networks. In: 2010 IEEE Second International Conference on Social Computing, pp. 309–314. IEEE, Piscataway (2010)

    Google Scholar 

  8. Cazabet, R., Takeda, H., Hamasaki, M., Amblard, F.: Using dynamic community detection to identify trends in user-generated content. Soc. Netw. Anal. Min. 2(4), 361–371 (2012)

    Article  Google Scholar 

  9. Chen, Z., Wilson, K.A., Jin, Y., Hendrix, W., Samatova, N.F.: Detecting and tracking community dynamics in evolutionary networks. In: 2010 IEEE International Conference on Data Mining Workshops, pp. 318–327. IEEE, Piscataway (2010)

    Google Scholar 

  10. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Inter. J. Complex Syst. 1695 (2006). http://igraph.org

  11. Falkowski, T., Bartelheimer, J., Spiliopoulou, M.: Mining and visualizing the evolution of subgroups in social networks. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 52–58. IEEE, Piscataway (2006)

    Google Scholar 

  12. Folino, F., Pizzuti, C.: Multiobjective evolutionary community detection for dynamic networks. In: GECCO ’10 Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 535–536 (2010)

    Google Scholar 

  13. Ghasemian, A., Zhang, P., Clauset, A., Moore, C., Peel, L.: Detectability thresholds and optimal algorithms for community structure in dynamic networks. Phys. Rev. X 6(3), 031,005 (2016)

    Google Scholar 

  14. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-driven clustering of dynamic graphs. In: International Symposium on Experimental Algorithms, pp. 436–448. Springer, Berlin (2010)

    Chapter  Google Scholar 

  16. Granell, C., Darst, R.K., Arenas, A., Fortunato, S., Gómez, S.: Benchmark model to assess community structure in evolving networks. Phys. Rev. E 92(1), 012,805 (2015)

    Article  Google Scholar 

  17. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: International conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 176–183. IEEE, Piscataway (2010)

    Google Scholar 

  18. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using networkX. Tech. rep., Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)

    Google Scholar 

  19. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  ADS  Google Scholar 

  20. Jdidia, M.B., Robardet, C., Fleury, E.: Communities detection and analysis of their dynamics in collaborative networks. In: 2007 2nd International Conference on Digital Information Management, vol. 2, pp. 744–749. IEEE, Piscataway (2007)

    Google Scholar 

  21. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016,118 (2009)

    Article  Google Scholar 

  22. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. CoRR abs/1710.04073 (2017). http://arxiv.org/abs/1710.04073

  23. Leskovec, J., Sosič, R.: Snap: a general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8(1), 1 (2016)

    Article  Google Scholar 

  24. Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web (WWW), pp. 685–694. ACM, New York (2008)

    Google Scholar 

  25. Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc. Ser. B (Stat Methodol.) 79(4), 1119–1141 (2017)

    Article  MathSciNet  Google Scholar 

  26. Matias, C., Rebafka, T., Villers, F.: Estimation and clustering in a semiparametric Poisson process stochastic block model for longitudinal networks (2015)

    Google Scholar 

  27. Meunier, D., Lambiotte, R., Bullmore, E.T.: Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010)

    Article  Google Scholar 

  28. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  ADS  Google Scholar 

  30. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026,113 (2004)

    Article  Google Scholar 

  31. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)

    Article  ADS  Google Scholar 

  32. Peel, L., Clauset, A.: Detecting change points in the large-scale structure of evolving networks. CoRR abs/1403.0989 (2014). http://arxiv.org/abs/1403.0989

  33. Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and community detection in networks. Sci. Adv. 3(5), e1,602,548 (2017)

    Article  ADS  Google Scholar 

  34. Peixoto, T.P.: Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4(1), 011,047 (2014)

    Google Scholar 

  35. Rossetti, G.: Rdyn: graph benchmark handling community dynamics. J. Complex Networks 5(6), 893–912 (2017). https://doi.org/10.1093/comnet/cnx016

    Article  Google Scholar 

  36. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 35 (2018)

    Article  Google Scholar 

  37. Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. Mach. Learn. 106(8), 1213–1241 (2017)

    Article  MathSciNet  Google Scholar 

  38. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

    Article  ADS  Google Scholar 

  39. Rosvall, M., Bergstrom, C.T.: Mapping change in large networks. PloS One 5(1), e8694 (2010)

    Article  ADS  Google Scholar 

  40. Scholtes, I.: When is a network a network?: Multi-order graphical model selection in pathways and temporal networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1037–1046. ACM, New York (2017)

    Google Scholar 

  41. Sengupta, N., Hamann, M., Wagner, D.: Benchmark generator for dynamic overlapping communities in networks. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 415–424. IEEE, Piscataway (2017)

    Google Scholar 

  42. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS One 6(8), e23,176 (2011). http://dx.doi.org/10.1371/journal.pone.0023176

    Article  Google Scholar 

  43. Takaffoli, M., Sangi, F., Fagnan, J., Zaïane, O.R.: Modec-modeling and detecting evolutions of communities. In: 5th International Conference on Weblogs and Social Media (ICWSM), pp. 30–41. AAAI, Menlo Park (2011)

    Google Scholar 

  44. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci. 609, 245–252 (2016)

    Article  MathSciNet  Google Scholar 

  45. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)

    Article  Google Scholar 

  46. Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: A bayesian approach toward finding communities and their evolutions in dynamic social networks. In: Proceedings of the International Conference on Data Mining, pp. 990–1001. SIAM, Philadelphia (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remy Cazabet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cazabet, R., Rossetti, G. (2019). Challenges in Community Discovery on Temporal Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_10

Download citation

Publish with us

Policies and ethics