Abstract
Community discovery is one of the most studied problems in network science. In recent years, many works have focused on discovering communities in temporal networks, thus identifying dynamic communities. Interestingly, dynamic communities are not mere sequences of static ones; new challenges arise from their dynamic nature. Despite the large number of algorithms introduced in the literature, some of these challenges have been overlooked or little studied until recently. In this chapter, we will discuss some of these challenges and recent propositions to tackle them. We will, among other topics, discuss of community events in gradually evolving networks, on the notion of identity through change and the ship of Theseus paradox, on dynamic communities in different types of networks including link streams, on the smoothness of dynamic communities, and on the different types of complexity of algorithms for their discovery. We will also list available tools and libraries adapted to work with this problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aynaud, T., Guillaume, J.L.: Static community detection algorithms for evolving networks. In: Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 513–519. IEEE, Piscataway (2010)
Aynaud, T., Guillaume, J.L.: Multi-step community detection and hierarchical time segmentation in evolving networks. In: Proceedings of the 5th SNA-KDD Workshop (2011)
Bazzi, M., Jeub, L.G., Arenas, A., Howison, S.D., Porter, M.A.: Generative benchmark models for mesoscale structure in multilayer networks. arXiv preprint arXiv:1608.06196 (2016)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10,008 (2008)
Boudebza, S., Cazabet, R., Azouaou, F., Nouali, O.: Olcpm: an online framework for detecting overlapping communities in dynamic social networks. Comput. Commun. 123, 36–51 (2018)
Cazabet, R., Amblard, F.: Dynamic community detection. In: Encyclopedia of Social Network Analysis and Mining, pp. 404–414. Springer, Berlin (2014)
Cazabet, R., Amblard, F., Hanachi, C.: Detection of overlapping communities in dynamical social networks. In: 2010 IEEE Second International Conference on Social Computing, pp. 309–314. IEEE, Piscataway (2010)
Cazabet, R., Takeda, H., Hamasaki, M., Amblard, F.: Using dynamic community detection to identify trends in user-generated content. Soc. Netw. Anal. Min. 2(4), 361–371 (2012)
Chen, Z., Wilson, K.A., Jin, Y., Hendrix, W., Samatova, N.F.: Detecting and tracking community dynamics in evolutionary networks. In: 2010 IEEE International Conference on Data Mining Workshops, pp. 318–327. IEEE, Piscataway (2010)
Csardi, G., Nepusz, T.: The igraph software package for complex network research. Inter. J. Complex Syst. 1695 (2006). http://igraph.org
Falkowski, T., Bartelheimer, J., Spiliopoulou, M.: Mining and visualizing the evolution of subgroups in social networks. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 52–58. IEEE, Piscataway (2006)
Folino, F., Pizzuti, C.: Multiobjective evolutionary community detection for dynamic networks. In: GECCO ’10 Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 535–536 (2010)
Ghasemian, A., Zhang, P., Clauset, A., Moore, C., Peel, L.: Detectability thresholds and optimal algorithms for community structure in dynamic networks. Phys. Rev. X 6(3), 031,005 (2016)
Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-driven clustering of dynamic graphs. In: International Symposium on Experimental Algorithms, pp. 436–448. Springer, Berlin (2010)
Granell, C., Darst, R.K., Arenas, A., Fortunato, S., Gómez, S.: Benchmark model to assess community structure in evolving networks. Phys. Rev. E 92(1), 012,805 (2015)
Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: International conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 176–183. IEEE, Piscataway (2010)
Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using networkX. Tech. rep., Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)
Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
Jdidia, M.B., Robardet, C., Fleury, E.: Communities detection and analysis of their dynamics in collaborative networks. In: 2007 2nd International Conference on Digital Information Management, vol. 2, pp. 744–749. IEEE, Piscataway (2007)
Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016,118 (2009)
Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. CoRR abs/1710.04073 (2017). http://arxiv.org/abs/1710.04073
Leskovec, J., Sosič, R.: Snap: a general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8(1), 1 (2016)
Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web (WWW), pp. 685–694. ACM, New York (2008)
Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R. Stat. Soc. Ser. B (Stat Methodol.) 79(4), 1119–1141 (2017)
Matias, C., Rebafka, T., Villers, F.: Estimation and clustering in a semiparametric Poisson process stochastic block model for longitudinal networks (2015)
Meunier, D., Lambiotte, R., Bullmore, E.T.: Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010)
Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)
Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)
Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026,113 (2004)
Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)
Peel, L., Clauset, A.: Detecting change points in the large-scale structure of evolving networks. CoRR abs/1403.0989 (2014). http://arxiv.org/abs/1403.0989
Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and community detection in networks. Sci. Adv. 3(5), e1,602,548 (2017)
Peixoto, T.P.: Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4(1), 011,047 (2014)
Rossetti, G.: Rdyn: graph benchmark handling community dynamics. J. Complex Networks 5(6), 893–912 (2017). https://doi.org/10.1093/comnet/cnx016
Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 35 (2018)
Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. Mach. Learn. 106(8), 1213–1241 (2017)
Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)
Rosvall, M., Bergstrom, C.T.: Mapping change in large networks. PloS One 5(1), e8694 (2010)
Scholtes, I.: When is a network a network?: Multi-order graphical model selection in pathways and temporal networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1037–1046. ACM, New York (2017)
Sengupta, N., Hamann, M., Wagner, D.: Benchmark generator for dynamic overlapping communities in networks. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 415–424. IEEE, Piscataway (2017)
Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS One 6(8), e23,176 (2011). http://dx.doi.org/10.1371/journal.pone.0023176
Takaffoli, M., Sangi, F., Fagnan, J., Zaïane, O.R.: Modec-modeling and detecting evolutions of communities. In: 5th International Conference on Weblogs and Social Media (ICWSM), pp. 30–41. AAAI, Menlo Park (2011)
Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci. 609, 245–252 (2016)
Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)
Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: A bayesian approach toward finding communities and their evolutions in dynamic social networks. In: Proceedings of the International Conference on Data Mining, pp. 990–1001. SIAM, Philadelphia (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Cazabet, R., Rossetti, G. (2019). Challenges in Community Discovery on Temporal Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-23495-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23494-2
Online ISBN: 978-3-030-23495-9
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)