Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DAMTRNN: A Delta Attention-Based Multi-task RNN for Intention Recognition

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11888))

Included in the following conference series:

  • 2061 Accesses

Abstract

Recognizing human intentions from electroencephalographic (EEG) signals is attracting extraordinary attention from the artificial intelligence community because of its promise in providing non-muscular forms of communication and control to those with disabilities. So far, studies have explored correlations between specific segments of an EEG signal and an associated intention. However, there are still challenges to be overcome on the road ahead. Among these, vector representations suffer from the enormous amounts of noise that characterize EEG signals. Identifying the correlations between signals from adjacent sensors on a headset is still difficult. Further, research not yet reached the point where learning models can accept decomposed EEG signals to capture the unique biological significance of the six established frequency bands. In pursuit of a more effective intention recognition method, we developed DAMTRNN, a delta attention-based multi-task recurrent neural network, for human intention recognition. The framework accepts divided EEG signals as inputs, and each frequency range is modeled separately but concurrently with a series of LSTMs. A delta attention network fuses the spatial and temporal interactions across different tasks into high-impact features, which captures correlations over longer time spans and further improves recognition accuracy. Comparative evaluations between DAMTRNN and 14 state-of-the-art methods and baselines show DAMTRNN with a record-setting performance of 98.87% accuracy.

This research is partially funded by Fundamental Research Funds for the Central Universities (Grant No. 2412017QD028), China Postdoctoral Science Foundation (Grant No. 2017M621192), Scientific and Technological Development Program of Jilin Province (Grant No. 20180520022JH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://physionet.org/pn4/eegmmidb/.

  2. 2.

    https://github.com/AnthonyTsun/DAN/.

  3. 3.

    http://www.schalklab.org/research/bci2000.

  4. 4.

    shorturl.at/gqB78.

References

  1. Alomari, M.H., Abubaker, A., Turani, A., Baniyounes, A.M., Manasreh, A.: EEG mouse: a machine learning-based brain computer interface. Int. J. Adv. Comput. Sci. Appl. 5, 193–198 (2014)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv (2014)

    Google Scholar 

  3. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)

  4. Chen, W., et al.: EEG-based motion intention recognition via multi-task RNNS. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 279–287. SIAM (2018)

    Chapter  Google Scholar 

  5. Dai, M., Zheng, D., Na, R., Wang, S., Zhang, S.: EEG classification of motor imagery using a novel deep learning framework. Sensors 19, 551 (2019)

    Article  Google Scholar 

  6. Fiala, P., Hanzelka, M., Čáp, M.: Electromagnetic waves and mental synchronization of humans in a large crowd. In: 11th International Conference on Measurement. IEEE (2017)

    Google Scholar 

  7. Frolov, A.A., Húsek, D., Biryukova, E.V., Bobrov, P.D., Mokienko, O.A., Alexandrov, A.: Principles of motor recovery in post-stroke patients using hand exoskeleton controlled by the brain-computer interface based on motor imagery. Neural Netw. World 27, 107 (2017)

    Article  Google Scholar 

  8. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  10. Kaiser, A.K., Doppelmayr, M., Iglseder, B.: EEG beta 2 power as surrogate marker for memory impairment: a pilot study. Inter. Psychogeriatr. 29, 1515–1523 (2017)

    Article  Google Scholar 

  11. Kang, H., Choi, S.: Bayesian common spatial patterns for multi-subject EEG classification. Neural Netw. 57, 39–50 (2014)

    Article  Google Scholar 

  12. Kim, Y., Ryu, J., Kim, K.K., Took, C.C., Mandic, D.P., Park, C.: Motor imagery classification using mu and beta rhythms of EEG with strong uncorrelating transform based complex common spatial patterns. Comput. Intell. Neurosci. 2016, 13 (2016)

    Google Scholar 

  13. Korik, A., Sosnik, R., Siddique, N., Coyle, D.: 3D hand motion trajectory prediction from EEG mu and beta bandpower. Prog. Brain Res. 228, 71–105 (2016)

    Article  Google Scholar 

  14. Major, T.C., Conrad, J.M.: The effects of pre-filtering and individualizing components for electroencephalography neural network classification. In: SoutheastCon. IEEE (2017)

    Google Scholar 

  15. Meisheri, H., Ramrao, N., Mitra, S.K.: Multiclass common spatial pattern with artifacts removal methodology for EEG signals. In: 4th International Symposium on ISCBI. IEEE (2016)

    Google Scholar 

  16. Moore, M.R., Franz, E.A.: Mu rhythm suppression is associated with the classification of emotion in faces. Affect. Behav. Neurosci. Cogn. 17, 224–234 (2017)

    Article  Google Scholar 

  17. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. arXiv preprint arXiv:1606.01933 (2016)

  18. Pinheiro, O.R., Alves, L.R., Romero, M., de Souza, J.R.: Wheelchair simulator game for training people with severe disabilities. In: International Conference on TISHW. IEEE (2016)

    Google Scholar 

  19. or Rashid, M.M., Ahmad, M.: Classification of motor imagery hands movement using Levenberg-Marquardt algorithm based on statistical features of EEG signal. In: 3rd International Conference on ICEEICT. IEEE (2016)

    Google Scholar 

  20. Rocktäschel, T., Grefenstette, E., et al.: Reasoning about entailment with neural attention. arXiv (2015)

    Google Scholar 

  21. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose BCI system. IEEE TBE (2004)

    Google Scholar 

  22. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention. arXiv (2015)

    Google Scholar 

  23. Shenoy, H.V., Vinod, A.P., Guan, C.: Shrinkage estimator based regularization for EEG motor imagery classification. In: ICICS. IEEE (2015)

    Google Scholar 

  24. Shiratori, T., Tsubakida, H., Ishiyama, A., Ono, Y.: Three-class classification of motor imagery EEG data including “rest state” using filter-bank multi-class common spatial pattern. In: 3rd International Winter Conference on BCI. IEEE (2015)

    Google Scholar 

  25. Sita, J., Nair, G.: Feature extraction and classification of EEG signals for mapping motor area of the brain. In: International Conference on ICCC. IEEE (2013)

    Google Scholar 

  26. Tabar, Y.R., Halici, U.: A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14, 016003 (2016)

    Article  Google Scholar 

  27. Tatum, W.O.: Ellen R. grass lecture: extraordinary EEG. Neurodiagn. J. 54, 3–21 (2014)

    Google Scholar 

  28. Vaadia, E., Birbaumer, N.: Grand challenges of brain computer interfaces in the years to come. Frontiers Neurosci. 3, 151–154 (2009)

    Article  Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  30. Vézard, L., Legrand, P., Chavent, M., Faïta-Aïnseba, F., Trujillo, L.: EEG classification for the detection of mental states. Appl. Soft Comput. 32, 113–131 (2015)

    Article  Google Scholar 

  31. Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar as a foreign language. In: NIPS (2015)

    Google Scholar 

  32. Wairagkar, M., Zoulias, I., Oguntosin, V., Hayashi, Y., Nasuto, S.: Movement intention based brain computer interface for virtual reality and soft robotics rehabilitation using novel autocorrelation analysis of EEG. In: 6th IEEE International Conference on BioRob. IEEE (2016)

    Google Scholar 

  33. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: HLT (2016)

    Google Scholar 

  34. Zhang, D., Yao, L., Zhang, X., Wang, S., Chen, W., Boots, R.: EEG-based intention recognition from spatio-temporal representations via cascade and parallel convolutional recurrent neural networks. arXiv preprint arXiv:1708.06578 (2017)

  35. Zhang, D., et al.: Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  36. Zhang, X., Yao, L., Huang, C., Sheng, Q.Z., Wang, X.: Intent recognition in smart living through deep recurrent neural networks. arXiv (2017)

    Google Scholar 

  37. Zhang, X., Yao, L., Sheng, Q.Z., Kanhere, S.S., Gu, T., Zhang, D.: Converting your thoughts to texts: enabling brain typing via deep feature learning of EEG signals. arXiv (2017)

    Google Scholar 

  38. Zheng, K., Gao, J., Ngiam, K.Y., Ooi, B.C., Yip, W.L.J.: Resolving the bias in electronic medical records. In: Proceedings of the 23rd ACM SIGKDD. ACM (2017)

    Google Scholar 

  39. Zhu, X., Huang, Z., Yang, Y., Shen, H.T., Xu, C., Luo, J.: Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recogn. 46, 215–229 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weitong Chen or Lin Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, W., Yue, L., Li, B., Wang, C., Sheng, Q.Z. (2019). DAMTRNN: A Delta Attention-Based Multi-task RNN for Intention Recognition. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2019. Lecture Notes in Computer Science(), vol 11888. Springer, Cham. https://doi.org/10.1007/978-3-030-35231-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35231-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35230-1

  • Online ISBN: 978-3-030-35231-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics