Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

StyleGAN2 Distillation for Feed-Forward Image Manipulation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12367))

Included in the following conference series:

  • 4741 Accesses

Abstract

StyleGAN2 is a state-of-the-art network in generating realistic images. Besides, it was explicitly trained to have disentangled directions in latent space, which allows efficient image manipulation by varying latent factors. Editing existing images requires embedding a given image into the latent space of StyleGAN2. Latent code optimization via backpropagation is commonly used for qualitative embedding of real world images, although it is prohibitively slow for many applications. We propose a way to distill a particular image manipulation of StyleGAN2 into image-to-image network trained in paired way. The resulting pipeline is an alternative to existing GANs, trained on unpaired data. We provide results of human faces’ transformation: gender swap, aging/rejuvenation, style transfer and image morphing. We show that the quality of generation using our method is comparable to StyleGAN2 backpropagation and current state-of-the-art methods in these particular tasks.

Y. Viazovetskyi et al.—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/NVlabs/stylegan2.

  2. 2.

    https://github.com/EvgenyKashin/stylegan2-distillation.

  3. 3.

    This helps to reduce generation artifacts in the dataset, while maintaining high variability as opposed to lowering truncation-psi parameter.

  4. 4.

    https://github.com/NVIDIA/pix2pixHD.

  5. 5.

    https://github.com/NVIDIA/pix2pixHD/issues/46.

  6. 6.

    https://github.com/yunjey/stargan.

  7. 7.

    https://github.com/NVlabs/MUNIT.

  8. 8.

    https://github.com/taki0112/StarGAN_v2-Tensorflow (unofficial implementation, so its results may differ from the official one).

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan++: how to edit the embedded images? arXiv preprint arXiv:1911.11544 (2019)

  2. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: how to embed images into the stylegan latent space? In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4432–4441 (2019)

    Google Scholar 

  3. Aguinaldo, A., Chiang, P.Y., Gain, A., Patil, A., Pearson, K., Feizi, S.: Compressing gans using knowledge distillation. arXiv preprint arXiv:1902.00159 (2019)

  4. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural Information Processing Systems, pp. 2654–2662 (2014)

    Google Scholar 

  5. Baylies, P.: Stylegan encoder - converts real images to latent space (2019). https://github.com/pbaylies/stylegan-encoder

  6. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  7. Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5933–5942 (2019)

    Google Scholar 

  8. Chen, B.-C., Chen, C.-S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 768–783. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_49

    Chapter  Google Scholar 

  9. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1520 (2017)

    Google Scholar 

  10. Chen, Y.C., Shen, X., Jia, J.: Makeup-go: blind reversion of portrait edit. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4501–4509 (2017)

    Google Scholar 

  11. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  12. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. arXiv preprint arXiv:1912.01865 (2019)

  13. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the em algorithm. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 28(1), 20–28 (1979)

    Google Scholar 

  14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)

    Google Scholar 

  15. French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adaptation. arXiv preprint arXiv:1706.05208 (2017)

  16. Gabbay, A., Hoshen, Y.: Style generator inversion for image enhancement and animation. arXiv preprint arXiv:1906.11880 (2019)

  17. Goetschalckx, L., Andonian, A., Oliva, A., Isola, P.: Ganalyze: toward visual definitions of cognitive image properties. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  18. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  19. He, Z., Kan, M., Shan, S., Chen, X.: S2gan: share aging factors across ages and share aging trends among individuals. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9440–9449 (2019)

    Google Scholar 

  20. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

    Google Scholar 

  21. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  22. Hoffman, J., et al: Cycada: cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)

  23. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  24. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 172–189 (2018)

    Google Scholar 

  25. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV (2018)

    Google Scholar 

  26. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  27. Jahanian, A., Chai, L., Isola, P.: On the “steerability” of generative adversarial networks. arXiv preprint arXiv:1907.07171 (2019)

  28. Kar, A., et al.: Meta-sim: learning to generate synthetic datasets. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4551–4560 (2019)

    Google Scholar 

  29. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  30. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  31. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. arXiv preprint arXiv:1912.04958 (2019)

  32. Khosla, A., Raju, A.S., Torralba, A., Oliva, A.: Understanding and predicting image memorability at a large scale. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2390–2398 (2015)

    Google Scholar 

  33. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: European Conference on Computer Vision (2018)

    Google Scholar 

  34. Lee, H.Y., et al.: Drit++: diverse image-to-image translation viadisentangled representations. arXiv preprint arXiv:1905.01270 (2019)

  35. Li, P., Hu, Y., Li, Q., He, R., Sun, Z.: Global and local consistent age generative adversarial networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1073–1078. IEEE (2018)

    Google Scholar 

  36. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)

    Google Scholar 

  37. Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. arXiv preprint arXiv:1905.01723 (2019)

  38. Liu, Y., Li, Q., Sun, Z.: Attribute-aware face aging with wavelet-based generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11877–11886 (2019)

    Google Scholar 

  39. Mirzadeh, S.I., Farajtabar, M., Li, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant: bridging the gap between student and teacher. arXiv preprint arXiv:1902.03393 (2019)

  40. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: Agedb: the first manually collected, in-the-wild age database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–59 (2017)

    Google Scholar 

  41. Nikitko, D.: Stylegan – encoder for official tensorflow implementation (2019). https://github.com/Puzer/stylegan-encoder

  42. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  43. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  44. Ravuri, S., Vinyals, O.: Classification accuracy score for conditional generative models. In: Advances in Neural Information Processing Systems, pp. 12247–12258 (2019)

    Google Scholar 

  45. Ravuri, S., Vinyals, O.: Seeing is not necessarily believing: limitations of biggans for data augmentation (2019)

    Google Scholar 

  46. Ruiz, N., Schulter, S., Chandraker, M.: Learning to simulate. arXiv preprint arXiv:1810.02513 (2018)

  47. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of gans for semantic face editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9243–9252 (2020)

    Google Scholar 

  48. Shi, T., Yuan, Y., Fan, C., Zou, Z., Shi, Z., Liu, Y.: Face-to-parameter translation for game character auto-creation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 161–170 (2019)

    Google Scholar 

  49. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2107–2116 (2017)

    Google Scholar 

  50. Song, J., Zhang, J., Gao, L., Liu, X., Shen, H.T.: Dual conditional gans for face aging and rejuvenation. In: IJCAI, pp. 899–905 (2018)

    Google Scholar 

  51. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE (2017)

    Google Scholar 

  52. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  53. Wang, T.C., Liu, M.Y., Tao, A., Liu, G., Kautz, J., Catanzaro, B.: Few-shot video-to-video synthesis. In: Conference on Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  54. Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601 (2018)

  55. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  56. Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7939–7947 (2018)

    Google Scholar 

  57. Xie, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves imagenet classification. arXiv preprint arXiv:1911.04252 (2019)

  58. Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning continuous face ageprogression: apyramid of gans. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  59. Yi, Z., Zhang, H., Tan, P., Gong, M.: Dualgan: unsupervised dual learning for image-to-image translation. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  60. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5810–5818 (2017)

    Google Scholar 

  61. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  62. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Viazovetskyi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 93347 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Viazovetskyi, Y., Ivashkin, V., Kashin, E. (2020). StyleGAN2 Distillation for Feed-Forward Image Manipulation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12367. Springer, Cham. https://doi.org/10.1007/978-3-030-58542-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58542-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58541-9

  • Online ISBN: 978-3-030-58542-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics