Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

One-Pixel Signature: Characterizing CNN Models for Backdoor Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

Abstract

We tackle the convolution neural networks (CNNs) backdoor detection problem by proposing a new representation called one-pixel signature. Our task is to detect/classify if a CNN model has been maliciously inserted with an unknown Trojan trigger or not. We design the one-pixel signature representation to reveal the characteristics of both clean and backdoored CNN models. Here, each CNN model is associated with a signature that is created by generating, pixel-by-pixel, an adversarial value that is the result of the largest change to the class prediction. The one-pixel signature is agnostic to the design choice of CNN architectures, and how they were trained. It can be computed efficiently for a black-box CNN model without accessing the network parameters. Our proposed one-pixel signature demonstrates a substantial improvement (by around 30% in the absolute detection accuracy) over the existing competing methods for backdoored CNN detection/classification. One-pixel signature is a general representation that can be used to characterize CNN models beyond backdoor detection.

S. Huang and W. Peng—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)

    Article  Google Scholar 

  2. Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997). https://doi.org/10.1023/A:1007981719186

    Article  Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  4. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  5. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2014)

    Google Scholar 

  6. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)

  7. Guo, W., Wang, L., Xing, X., Du, M., Song, D.: Tabor: a highly accurate approach to inspecting and restoring trojan backdoors in AI systems. arXiv preprint arXiv:1908.01763 (2019)

  8. Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices. Unpublished manuscript 46 (1971)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  14. Lindeberg, T.: Scale-Space Theory in Computer Vision, vol. 256. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  15. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring attacks on deep neural networks. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 273–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5_13

    Chapter  Google Scholar 

  16. Liu, Y., Lee, W.C., Tao, G., Ma, S., Aafer, Y., Zhang, X.: ABS: scanning neural networks for back-doors by artificial brain stimulation. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 1265–1282 (2019)

    Google Scholar 

  17. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: CVPR, pp. 5188–5196 (2015)

    Google Scholar 

  18. U.S. Army Research Office: W911nf-19-s-0012. In: U.S. Army Research Office Broad Agency Announcement for TrojAI (2019)

    Google Scholar 

  19. Prakash, A., Moran, N., Garber, S., DiLillo, A., Storer, J.: Deflecting adversarial attacks with pixel deflection. In: CVPR (2018)

    Google Scholar 

  20. Qiao, X., Yang, Y., Li, H.: Defending neural backdoors via generative distribution modeling. In: Advances in Neural Information Processing Systems, pp. 14004–14013 (2019)

    Google Scholar 

  21. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recognition benchmark: a multi-class classification competition. In: IEEE International Joint Conference on Neural Networks, pp. 1453–1460 (2011)

    Google Scholar 

  22. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 23, 828–841 (2019)

    Article  Google Scholar 

  23. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  24. Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in neural networks. In: IEEE Symposium on Security and Privacy (2019)

    Google Scholar 

  25. Witkin, A.P.: Scale-space filtering. In: Readings in Computer Vision, pp. 329–332. Elsevier (1987)

    Google Scholar 

  26. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  27. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017)

    Google Scholar 

  28. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  29. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

Download references

Acknowledgment

This work is supported by NSF IIS-1717431 and NSF IIS-1618477. We thank Rajesh Gupta and Mani Srivastava for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S., Peng, W., Jia, Z., Tu, Z. (2020). One-Pixel Signature: Characterizing CNN Models for Backdoor Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics