Abstract
Recent studies have shown that DNNs can be compromised by backdoor attacks crafted at training time. A backdoor attack installs a backdoor into the victim model by injecting a backdoor pattern into a small proportion of the training data. At test time, the victim model behaves normally on clean test data, yet consistently predicts a specific (likely incorrect) target class whenever the backdoor pattern is present in a test example. While existing backdoor attacks are effective, they are not stealthy. The modifications made on training data or labels are often suspicious and can be easily detected by simple data filtering or human inspection. In this paper, we present a new type of backdoor attack inspired by an important natural phenomenon: reflection. Using mathematical modeling of physical reflection models, we propose reflection backdoor (Refool) to plant reflections as backdoor into a victim model. We demonstrate on 3 computer vision tasks and 5 datasets that, Refoolcan attack state-of-the-art DNNs with high success rate, and is resistant to state-of-the-art backdoor defenses.
This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61972012.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: AISTATS, pp. 2938–2948 (2020)
Barni, M., Kallas, K., Tondi, B.: A new backdoor attack in CNNs by training set corruption without label poisoning. In: IEEE International Conference on Image Processing (ICIP), pp. 101–105. IEEE (2019)
Bhalerao, A., Kallas, K., Tondi, B., Barni, M.: Luminance-based video backdoor attack against anti-spoofing rebroadcast detection. In: IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6. IEEE (2019)
Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector machines. arXiv preprint arXiv:1206.6389 (2012)
Buades, A., Coll, B., Morel, J.M.: Non-local means denoising. Image Process. On Line 1, 208–212 (2011)
Chen, B., et al.: Detecting backdoor attacks on deep neural networks by activation clustering. arXiv preprint arXiv:1811.03728 (2018)
Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)
Dai, J., Chen, C., Li, Y.: A backdoor attack against LSTM-based text classification systems. IEEE Access 7, 138872–138878 (2019)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Doan, B.G., Abbasnejad, E., Ranasinghe, D.C.: Februus: input purification defense against trojan attacks on deep neural network systems. arXiv: 1908.03369 (2019)
Duan, R., Ma, X., Wang, Y., Bailey, J., Qin, A.K., Yang, Y.: Adversarial Camouflage: hiding physical-world attacks with natural styles. In: CVPR, pp. 1000–1008 (2020)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
Evtimov, I., et al.: Robust physical-world attacks on deep learning models. In: CVPR (2018)
Eykholt, K., et al.: Robust physical-world attacks on deep learning models. arXiv preprint arXiv:1707.08945 (2017)
Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L., Kohane, I.S.: Adversarial attacks on medical machine learning. In: Science. American Association for the Advancement of Science (2019)
Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: a defence against trojan attacks on deep neural networks. In: Proceedings of the 35th Annual Computer Security Applications Conference, pp. 113–125 (2019)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural networks. In: ICASSP. IEEE (2013)
Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)
Guo, C., Rana, M., Cisse, M., Van Der Maaten, L.: Countering adversarial images using input transformations. arXiv preprint arXiv:1711.00117 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial examples. arXiv preprint arXiv:1907.07174 (2019)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)
Huang, L.: Chinese traffic sign database. http://www.nlpr.ia.ac.cn/pal/trafficdata/ recognition.html
Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44, 800–801 (2008)
Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: ICML (2017)
Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: ICCV (2009)
Kwon, H., Yoon, H., Park, K.W.: FriendNet backdoor: indentifying backdoor attack that is safe for friendly deep neural network. In: The 3rd International Conference on Software Engineering and Information Management (ICSIM 2020). ACM’s International Conference Proceedings Series (2020)
Li, S., Zhao, B.Z.H., Yu, J., Xue, M., Kaafar, D., Zhu, H.: Invisible backdoor attacks against deep neural networks. arXiv preprint arXiv:1909.02742 (2019)
Li, Y., Zhai, T., Wu, B., Jiang, Y., Li, Z., Xia, S.: Rethinking the trigger of backdoor attack. arXiv preprint arXiv:2004.04692 (2020)
Li, Y., Brown, M.S.: Single image layer separation using relative smoothness. In: CVPR (2014)
Liao, C., Zhong, H., Squicciarini, A., Zhu, S., Miller, D.: Backdoor embedding in convolutional neural network models via invisible perturbation. arXiv preprint arXiv:1808.10307 (2018)
Liu, B., Gu, L., Lu, F.: Unsupervised ensemble strategy for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 111–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_13
Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 273–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5_13
Liu, Y., et al.: Trojaning attack on neural networks (2018)
Liu, Y., Li, Y., You, S., Lu, F.: Semantic guided single image reflection removal. arXiv preprint arXiv:1907.11912 (2019)
Liu, Y., Lu, F.: Separate in latent space: unsupervised single image layer separation. In: AAAI (2020)
Liu, Y., You, S., Li, Y., Lu, F.: Unsupervised learning for intrinsic image decomposition from a single image. In: CVPR (2020)
Ma, X., et al.: Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognit. 107332 (2020)
Niu, Y., et al.: Pathological evidence exploration in deep retinal image diagnosis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1093–1101 (2019)
Pasquini, C., Böhme, R.: Trembling triggers: exploring the sensitivity of backdoors in DNN-based face recognition. EURASIP J. Inf. Secur. 2020(1), 1–15 (2020)
Rehman, H., Ekelhart, A., Mayer, R.: Backdoor attacks in neural networks – a systematic evaluation on multiple traffic sign datasets. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2019. LNCS, vol. 11713, pp. 285–300. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29726-8_18
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: ICCV (2017)
Shafahi, A., et al.: Poison frogs! targeted clean-label poisoning attacks on neural networks. In: NeurIPS, pp. 6103–6113 (2018)
Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition. In: CCS, pp. 1528–1540 (2016)
Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recognition benchmark: a multi-class classification competition. In: IJCNN (2011)
Steinhardt, J., Koh, P.W.W., Liang, P.S.: Certified defenses for data poisoning attacks. In: NIPS (2017)
Sun, Z., Kairouz, P., Suresh, A.T., McMahan, H.B.: Can you really backdoor federated learning? arXiv preprint arXiv:1911.07963 (2019)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS (2014)
Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
Timofte, R., Zimmermann, K., Van Gool, L.: Multi-view traffic sign detection, recognition, and 3D localisation. Mach. Vis. Appl. 25(3), 633–647 (2011). https://doi.org/10.1007/s00138-011-0391-3
Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: NIPS (2018)
Turner, A., Tsipras, D., Madry, A.: Clean-label backdoor attacks. https://people.csail.mit.edu/madry/lab/ (2019)
Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Kot, A.C.: Benchmarking single-image reflection removal algorithms. In: ICCV (2017)
Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in neural networks (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)
Xiang, Z., Miller, D.J., Kesidis, G.: A benchmark study of backdoor data poisoning defenses for deep neural network classifiers and a novel defense. In: IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2019)
Xie, C., Huang, K., Chen, P.Y., Li, B.: DBA: distributed backdoor attacks against federated learning. In: ICLR (2020)
Yao, Y., Li, H., Zheng, H., Zhao, B.Y.: Latent backdoor attacks on deep neural networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (2019)
Yao, Y., Li, H., Zheng, H., Zhao, B.Y.: Latent backdoor attacks on deep neural networks. In: ACM CCS, pp. 2041–2055 (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Zhang, X., Ren, N., Chen, Q.: Single image reflection separation with perceptual losses. In: CVPR (2018)
Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks. arXiv preprint arXiv:2006.11165 (2020)
Zhao, S., Ma, X., Zheng, X., Bailey, J., Chen, J., Jiang, Y.G.: Clean-label backdoor attacks on video recognition models. In: CVPR, pp. 14443–14452 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y., Ma, X., Bailey, J., Lu, F. (2020). Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-58607-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58606-5
Online ISBN: 978-3-030-58607-2
eBook Packages: Computer ScienceComputer Science (R0)