Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12355))

Included in the following conference series:

Abstract

Recent studies have shown that DNNs can be compromised by backdoor attacks crafted at training time. A backdoor attack installs a backdoor into the victim model by injecting a backdoor pattern into a small proportion of the training data. At test time, the victim model behaves normally on clean test data, yet consistently predicts a specific (likely incorrect) target class whenever the backdoor pattern is present in a test example. While existing backdoor attacks are effective, they are not stealthy. The modifications made on training data or labels are often suspicious and can be easily detected by simple data filtering or human inspection. In this paper, we present a new type of backdoor attack inspired by an important natural phenomenon: reflection. Using mathematical modeling of physical reflection models, we propose reflection backdoor (Refool) to plant reflections as backdoor into a victim model. We demonstrate on 3 computer vision tasks and 5 datasets that, Refoolcan attack state-of-the-art DNNs with high success rate, and is resistant to state-of-the-art backdoor defenses.

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61972012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: AISTATS, pp. 2938–2948 (2020)

    Google Scholar 

  2. Barni, M., Kallas, K., Tondi, B.: A new backdoor attack in CNNs by training set corruption without label poisoning. In: IEEE International Conference on Image Processing (ICIP), pp. 101–105. IEEE (2019)

    Google Scholar 

  3. Bhalerao, A., Kallas, K., Tondi, B., Barni, M.: Luminance-based video backdoor attack against anti-spoofing rebroadcast detection. In: IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6. IEEE (2019)

    Google Scholar 

  4. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector machines. arXiv preprint arXiv:1206.6389 (2012)

  5. Buades, A., Coll, B., Morel, J.M.: Non-local means denoising. Image Process. On Line 1, 208–212 (2011)

    MATH  Google Scholar 

  6. Chen, B., et al.: Detecting backdoor attacks on deep neural networks by activation clustering. arXiv preprint arXiv:1811.03728 (2018)

  7. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)

  8. Dai, J., Chen, C., Li, Y.: A backdoor attack against LSTM-based text classification systems. IEEE Access 7, 138872–138878 (2019)

    Article  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  10. Doan, B.G., Abbasnejad, E., Ranasinghe, D.C.: Februus: input purification defense against trojan attacks on deep neural network systems. arXiv: 1908.03369 (2019)

  11. Duan, R., Ma, X., Wang, Y., Bailey, J., Qin, A.K., Yang, Y.: Adversarial Camouflage: hiding physical-world attacks with natural styles. In: CVPR, pp. 1000–1008 (2020)

    Google Scholar 

  12. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  13. Evtimov, I., et al.: Robust physical-world attacks on deep learning models. In: CVPR (2018)

    Google Scholar 

  14. Eykholt, K., et al.: Robust physical-world attacks on deep learning models. arXiv preprint arXiv:1707.08945 (2017)

  15. Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L., Kohane, I.S.: Adversarial attacks on medical machine learning. In: Science. American Association for the Advancement of Science (2019)

    Google Scholar 

  16. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: a defence against trojan attacks on deep neural networks. In: Proceedings of the 35th Annual Computer Security Applications Conference, pp. 113–125 (2019)

    Google Scholar 

  17. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  18. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural networks. In: ICASSP. IEEE (2013)

    Google Scholar 

  19. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)

  20. Guo, C., Rana, M., Cisse, M., Van Der Maaten, L.: Countering adversarial images using input transformations. arXiv preprint arXiv:1711.00117 (2017)

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  22. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial examples. arXiv preprint arXiv:1907.07174 (2019)

  23. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  24. Huang, L.: Chinese traffic sign database. http://www.nlpr.ia.ac.cn/pal/trafficdata/ recognition.html

  25. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44, 800–801 (2008)

    Article  Google Scholar 

  26. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: ICML (2017)

    Google Scholar 

  27. Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: ICCV (2009)

    Google Scholar 

  28. Kwon, H., Yoon, H., Park, K.W.: FriendNet backdoor: indentifying backdoor attack that is safe for friendly deep neural network. In: The 3rd International Conference on Software Engineering and Information Management (ICSIM 2020). ACM’s International Conference Proceedings Series (2020)

    Google Scholar 

  29. Li, S., Zhao, B.Z.H., Yu, J., Xue, M., Kaafar, D., Zhu, H.: Invisible backdoor attacks against deep neural networks. arXiv preprint arXiv:1909.02742 (2019)

  30. Li, Y., Zhai, T., Wu, B., Jiang, Y., Li, Z., Xia, S.: Rethinking the trigger of backdoor attack. arXiv preprint arXiv:2004.04692 (2020)

  31. Li, Y., Brown, M.S.: Single image layer separation using relative smoothness. In: CVPR (2014)

    Google Scholar 

  32. Liao, C., Zhong, H., Squicciarini, A., Zhu, S., Miller, D.: Backdoor embedding in convolutional neural network models via invisible perturbation. arXiv preprint arXiv:1808.10307 (2018)

  33. Liu, B., Gu, L., Lu, F.: Unsupervised ensemble strategy for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 111–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_13

    Chapter  Google Scholar 

  34. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 273–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5_13

    Chapter  Google Scholar 

  35. Liu, Y., et al.: Trojaning attack on neural networks (2018)

    Google Scholar 

  36. Liu, Y., Li, Y., You, S., Lu, F.: Semantic guided single image reflection removal. arXiv preprint arXiv:1907.11912 (2019)

  37. Liu, Y., Lu, F.: Separate in latent space: unsupervised single image layer separation. In: AAAI (2020)

    Google Scholar 

  38. Liu, Y., You, S., Li, Y., Lu, F.: Unsupervised learning for intrinsic image decomposition from a single image. In: CVPR (2020)

    Google Scholar 

  39. Ma, X., et al.: Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognit. 107332 (2020)

    Google Scholar 

  40. Niu, Y., et al.: Pathological evidence exploration in deep retinal image diagnosis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1093–1101 (2019)

    Google Scholar 

  41. Pasquini, C., Böhme, R.: Trembling triggers: exploring the sensitivity of backdoors in DNN-based face recognition. EURASIP J. Inf. Secur. 2020(1), 1–15 (2020)

    Article  Google Scholar 

  42. Rehman, H., Ekelhart, A., Mayer, R.: Backdoor attacks in neural networks – a systematic evaluation on multiple traffic sign datasets. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2019. LNCS, vol. 11713, pp. 285–300. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29726-8_18

    Chapter  Google Scholar 

  43. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: ICCV (2017)

    Google Scholar 

  44. Shafahi, A., et al.: Poison frogs! targeted clean-label poisoning attacks on neural networks. In: NeurIPS, pp. 6103–6113 (2018)

    Google Scholar 

  45. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition. In: CCS, pp. 1528–1540 (2016)

    Google Scholar 

  46. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recognition benchmark: a multi-class classification competition. In: IJCNN (2011)

    Google Scholar 

  47. Steinhardt, J., Koh, P.W.W., Liang, P.S.: Certified defenses for data poisoning attacks. In: NIPS (2017)

    Google Scholar 

  48. Sun, Z., Kairouz, P., Suresh, A.T., McMahan, H.B.: Can you really backdoor federated learning? arXiv preprint arXiv:1911.07963 (2019)

  49. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS (2014)

    Google Scholar 

  50. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  51. Timofte, R., Zimmermann, K., Van Gool, L.: Multi-view traffic sign detection, recognition, and 3D localisation. Mach. Vis. Appl. 25(3), 633–647 (2011). https://doi.org/10.1007/s00138-011-0391-3

    Article  Google Scholar 

  52. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: NIPS (2018)

    Google Scholar 

  53. Turner, A., Tsipras, D., Madry, A.: Clean-label backdoor attacks. https://people.csail.mit.edu/madry/lab/ (2019)

  54. Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Kot, A.C.: Benchmarking single-image reflection removal algorithms. In: ICCV (2017)

    Google Scholar 

  55. Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in neural networks (2019)

    Google Scholar 

  56. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)

    Google Scholar 

  57. Xiang, Z., Miller, D.J., Kesidis, G.: A benchmark study of backdoor data poisoning defenses for deep neural network classifiers and a novel defense. In: IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2019)

    Google Scholar 

  58. Xie, C., Huang, K., Chen, P.Y., Li, B.: DBA: distributed backdoor attacks against federated learning. In: ICLR (2020)

    Google Scholar 

  59. Yao, Y., Li, H., Zheng, H., Zhao, B.Y.: Latent backdoor attacks on deep neural networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (2019)

    Google Scholar 

  60. Yao, Y., Li, H., Zheng, H., Zhao, B.Y.: Latent backdoor attacks on deep neural networks. In: ACM CCS, pp. 2041–2055 (2019)

    Google Scholar 

  61. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  62. Zhang, X., Ren, N., Chen, Q.: Single image reflection separation with perceptual losses. In: CVPR (2018)

    Google Scholar 

  63. Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks. arXiv preprint arXiv:2006.11165 (2020)

  64. Zhao, S., Ma, X., Zheng, X., Bailey, J., Chen, J., Jiang, Y.G.: Clean-label backdoor attacks on video recognition models. In: CVPR, pp. 14443–14452 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Lu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 629 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Ma, X., Bailey, J., Lu, F. (2020). Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58607-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58606-5

  • Online ISBN: 978-3-030-58607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics