Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Verified Online Monitor for Metric Temporal Logic with Quantitative Semantics

  • Conference paper
  • First Online:
Runtime Verification (RV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12399))

Included in the following conference series:

  • 1051 Accesses

Abstract

We investigate the formalization, using the Coq proof assistant, of a procedure for constructing online monitors from specifications written in past-time metric temporal logic (MTL). We employ an algebraic quantitative semantics that encompasses the Boolean and robustness semantics of MTL and we interpret formulas over a discrete temporal domain. The class of Moore machines, a kind of string transducers, is used as a formal model of online monitors. The main result is that there is a compositional construction from formulas to monitors, so that each monitor computes (in an online fashion) the semantic values of the corresponding formula over the input stream. From our Coq formalization, we extract OCaml code for executable online monitors. We have compared the performance of our monitoring framework with Reelay, a state-of-the-art tool for monitoring temporal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, H., Mangharam, R.: Generalized robust MTL semantics for problems in cardiac electrophysiology. In: ACC 2018, pp. 1592–1597. IEEE (2018)

    Google Scholar 

  2. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_21

    Chapter  Google Scholar 

  3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_21

    Chapter  MATH  Google Scholar 

  4. Bakhirkin, A., Basset, N.: Specification and efficient monitoring beyond STL. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 79–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_5

    Chapter  Google Scholar 

  5. Bakhirkin, A., Ferrère, T., Maler, O., Ulus, D.: On the quantitative semantics of regular expressions over real-valued signals. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 189–206. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3_11

    Chapter  MATH  Google Scholar 

  6. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    Chapter  Google Scholar 

  7. Basin, D., et al.: A formally verified, optimized monitor for metric first-order dynamic logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 432–453. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_25

    Chapter  Google Scholar 

  8. Basin, D., Klaedtke, F., Zalinescu, E.: Greedily computing associative aggregations on sliding windows. Inf. Process. Lett. 115(2), 186–192 (2015)

    Article  MathSciNet  Google Scholar 

  9. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger, G., Havelund, K. (eds.) RV-CuBES 2017. Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair (2017)

    Google Scholar 

  10. Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 494–509. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34281-3_34

    Chapter  Google Scholar 

  11. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: TIME 2005, pp. 166–174. IEEE (2005)

    Google Scholar 

  12. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the Skorokhod metric. Formal Methods Syst. Des. 50(2), 168–206 (2017). https://doi.org/10.1007/s10703-016-0261-8

    Article  MATH  Google Scholar 

  13. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_19

    Chapter  Google Scholar 

  14. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17

    Chapter  Google Scholar 

  15. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19

    Chapter  Google Scholar 

  16. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  17. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_10

    Chapter  Google Scholar 

  18. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

    Article  MathSciNet  Google Scholar 

  19. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_24

    Chapter  Google Scholar 

  20. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative monitoring of STL with edit distance. Formal Methods Syst. Des. 53(1), 83–112 (2018). https://doi.org/10.1007/s10703-018-0319-x

    Article  MATH  Google Scholar 

  21. Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: An algebraic framework for runtime verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(11), 2233–2243 (2018)

    Article  Google Scholar 

  22. Kahn, G.: The semantics of a simple language for parallel programming. Inf. Process. 74, 471–475 (1974)

    MathSciNet  MATH  Google Scholar 

  23. Lemire, D.: Streaming maximum-minimum filter using no more than three comparisons per element. Nord. J. Comput. 13(4), 328–339 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits. Int. J. Softw. Tools Technol. Transfer 15(3), 247–268 (2013)

    Article  Google Scholar 

  25. Mamouras, K.: Semantic foundations for deterministic dataflow and stream processing. In: Müller, P., et al. (eds.) ESOP 2020. LNCS, vol. 12075, pp. 394–427. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44914-8_15

    Chapter  Google Scholar 

  26. Mamouras, K., Raghothaman, M., Alur, R., Ives, Z.G., Khanna, S.: StreamQRE: modular specification and efficient evaluation of quantitative queries over streaming data. In: PLDI 2017, pp. 693–708. ACM (2017)

    Google Scholar 

  27. Mamouras, K., Wang, Z.: Online signal monitoring with bounded lag (2020). Accepted for publication in the IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, ESWEEK-TCAD special issue (EMSOFT 2020)

    Google Scholar 

  28. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative and quantitative trace analysis with extended signal temporal logic. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 303–319. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_18

    Chapter  Google Scholar 

  29. Rodionova, A., Bartocci, E., Nickovic, D., Grosu, R.: Temporal logic as filtering. In: International Conference on Hybrid Systems: Computation and Control (HSCC 2016), pp. 11–20. ACM (2016)

    Google Scholar 

  30. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for metric first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 310–328. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_18

    Chapter  Google Scholar 

  31. Ulus, D.: Timescales: a benchmark generator for MTL monitoring tools. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 402–412. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_25

    Chapter  Google Scholar 

  32. Ulus, D.: The Reelay monitoring tool (2020). https://doganulus.github.io/reelay/. Accessed 20 Aug 2020

  33. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_16

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnishom Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chattopadhyay, A., Mamouras, K. (2020). A Verified Online Monitor for Metric Temporal Logic with Quantitative Semantics. In: Deshmukh, J., Ničković, D. (eds) Runtime Verification. RV 2020. Lecture Notes in Computer Science(), vol 12399. Springer, Cham. https://doi.org/10.1007/978-3-030-60508-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60508-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60507-0

  • Online ISBN: 978-3-030-60508-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics