Abstract
Time series ordinal classification is one of the less studied problems in time series data mining. This problem consists in classifying time series with labels that show a natural order between them. In this paper, an approach is proposed based on the Shapelet Transform (ST) specifically adapted to ordinal classification. ST consists of two different steps: 1) the shapelet extraction procedure and its evaluation; and 2) the classifier learning using the transformed dataset. In this way, regarding the first step, 3 ordinal shapelet quality measures are proposed to assess the shapelets extracted, and, for the second step, an ordinal classifier is applied once the transformed dataset has been constructed. An empirical evaluation is carried out, considering 7 ordinal datasets from the UEA & UCR Time Series Classification (TSC) repository. The results show that a support vector ordinal classifier applied to the ST using the Pearson’s correlation coefficient (\(R^2\)) is the combination achieving the best results in terms of two evaluation metrics: accuracy and average mean absolute error. A final comparison against three of the most popular and competitive nominal TSC techniques is performed, demonstrating that ordinal approaches can achieve higher performances even in terms of accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
ORCA is available in the repository https://github.com/ayrna/orca.
- 2.
All the code used in this paper is available in the repository https://github.com/dguijo/TSOC.
- 3.
- 4.
sktime is available in the repository https://github.com/alan-turing-institute/sktime.
References
Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009, pp. 283–287. IEEE (2009). https://doi.org/10.1109/isda.2009.230
Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9
Bostrom, A., Bagnall, A.: Binary shapelet transform for multiclass time series classification. In: Hameurlain, A., Küng, J., Wagner, R., Madria, S., Hara, T. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII. LNCS, vol. 10420, pp. 24–46. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55608-5_2
Chu, W., Keerthi, S.S.: Support vector ordinal regression. Neural Comput. 19(3), 792–815 (2007). https://doi.org/10.1049/cp:19991091
Cruz-Ramírez, M., Hervás-Martínez, C., Sánchez-Monedero, J., Gutiérrez, P.A.: Metrics to guide a multi-objective evolutionary algorithm for ordinal classification. Neurocomputing 135, 21–31 (2014). https://doi.org/10.1109/isda.2011.6121818
Davis, L.M., Theobald, B.J., Lines, J., Toms, A., Bagnall, A.: On the segmentation and classification of hand radiographs. Int. J. Neural Syst. 22(05), 1250020 (2012). https://doi.org/10.1142/s0129065712500207
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2012). https://doi.org/10.1007/s00357-007-0015-9
Fawaz, H.I., et al.: InceptionTime: finding AlexNet for time series classification. ArXiv e-prints arXiv:1909.04939, http://arxiv.org/abs/1909.04939 (2019)
Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014). https://doi.org/10.1145/2623330.2623613
Guijo-Rubio, D., et al.: Ordinal regression algorithms for the analysis of convective situations over Madrid-Barajas airport. Atmos. Res. 236, 104798 (2020). https://doi.org/10.1016/j.atmosres.2019.104798
Guijo-Rubio, D., Gutiérrez, P., Casanova-Mateo, C., Sanz-Justo, J., Salcedo-Sanz, S., Hervás-Martínez, C.: Prediction of low-visibility events due to fog using ordinal classification. Atmos. Res. 214, 64–73 (2018). https://doi.org/10.1016/j.atmosres.2018.07.017
Gutiérrez, P.A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernández-Navarro, F., Hervás-Martínez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016). https://doi.org/10.1109/tkde.2015.2457911
Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2013). https://doi.org/10.1007/s10618-013-0322-1
Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002). https://doi.org/10.1109/72.991427
Large, J., Kemsley, E.K., Wellner, N., Goodall, I., Bagnall, A.: Detecting forged alcohol non-invasively through vibrational spectroscopy and machine learning. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10937, pp. 298–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93034-3_24
Lines, J., Taylor, S., Bagnall, A.: Time series classification with HIVE-COTE: The hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl. Disc. Data 12(5), 1–35 (2018). https://doi.org/10.1109/icdm.2016.0133
Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., Király, F.J.: sktime: a unified interface for machine learning with time series. In: Workshop on Systems for ML at NeurIPS (2019)
Pérez-Ortiz, M., Gutiérrez, P.A., Hervás-Martínez, C., Yao, X.: Graph-based approaches for over-sampling in the context of ordinal regression. IEEE Trans. Knowl. Data Eng. 27(5), 1233–1245 (2014). https://doi.org/10.1109/tkde.2014.2365780
Pérez-Ortiz, M., Sáez, A., Sánchez-Monedero, J., Gutiérrez, P.A., Hervás-Martínez, C.: Tackling the ordinal and imbalance nature of a melanoma image classification problem. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2156–2163. IEEE (2016). https://doi.org/10.1109/ijcnn.2016.7727466
Pérez-Ortiz, M., Torres-Jiménez, M., Gutiérrez, P.A., Sánchez-Monedero, J., Hervás-Martínez, C.: Fisher score-based feature selection for ordinal classification: a social survey on subjective well-being. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds.) HAIS 2016. LNCS (LNAI), vol. 9648, pp. 597–608. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32034-2_50
Sánchez-Monedero, J., Gutiérrez, P.A., Pérez-Ortiz, M.: ORCA: a matlab/octave toolbox for ordinal regression. J. Mach. Learn. Res. 20(125), 1–5 (2019)
Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001). https://doi.org/10.1145/584091.584093
Shashua, A., Levin, A.: Ranking with large margin principle: two approaches. In: Advances in Neural Information Processing Systems, pp. 961–968 (2003)
Shifaz, A., Pelletier, C., Petitjean, F., Webb, G.: TS-CHIEF: a scalable and accurate forest algorithm for time series classification. ArXiv e-prints arXiv:1906.10329 (2019)
Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Min. Knowl. Disc. 22(1–2), 149–182 (2011). https://doi.org/10.1007/s10618-010-0179-5
Acknowledgement
This research has been partially supported by the “Ministerio de Economía, Industria y Competitividad” (Ref. TIN2017-85887-C2-1-P) and the “Fondo Europeo de Desarrollo Regional (FEDER) y de la Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía” (Ref. UCO-1261651), Spain. D. Guijo-Rubio’s research has been supported by the FPU Predoctoral Program from Spanish Ministry of Education and Science (Grant Ref. FPU16/02128).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Guijo-Rubio, D., Gutiérrez, P.A., Bagnall, A., Hervás-Martínez, C. (2020). Ordinal Versus Nominal Time Series Classification. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2020. Lecture Notes in Computer Science(), vol 12588. Springer, Cham. https://doi.org/10.1007/978-3-030-65742-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-65742-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65741-3
Online ISBN: 978-3-030-65742-0
eBook Packages: Computer ScienceComputer Science (R0)