Abstract
This paper presents and evaluates two pruning techniques to reinforce the efficiency of constraint optimization solvers based on multi-valued decision-diagrams (MDD). It adopts the branch-and-bound framework proposed by Bergman et al. in 2016 to solve dynamic programs to optimality. In particular, our paper presents and evaluates the effectiveness of the local-bound (LocB) and rough upper-bound pruning (RUB). LocB is a new and effective rule that leverages the approximate MDD structure to avoid the exploration of non-interesting nodes. RUB is a rule to reduce the search space during the development of bounded-width-MDDs. The experimental study we conducted on the Maximum Independent Set Problem (MISP), Maximum Cut Problem (MCP), Maximum 2 Satisfiability (MAX2SAT) and the Traveling Salesman Problem with Time Windows (TSPTW) shows evidence indicating that rough-upper-bound and local-bound pruning have a high impact on optimization solvers based on branch-and-bound with MDDs. In particular, it shows that RUB delivers excellent results but requires some effort when defining the model. Also, it shows that LocB provides a significant improvement automatically; without necessitating any user-supplied information. Finally, it also shows that rough-upper-bound and local-bound pruning are not mutually exclusive, and their combined benefit supersedes the individual benefit of using each technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
An incremental refinement a.k.a. construction by separation procedure is detailed in [11, pp. 51–52] but we will not cover it here for the sake of conciseness.
- 3.
Consequently, it also suffers from a potentially exponential time requirement in the worst case. Indeed, time is constant in the final number of nodes (unless the transition functions themselves are exponential in the input).
- 4.
The very definition of these operators is problem-specific. However, [22] formally defines the conditions that are necessary to correctness.
- 5.
- 6.
Available online at: http://hdl.handle.net/2078.1/245322.
References
Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11
Ascheuer, N.: Hamiltonian path problems in the on-line optimization of flexible manufacturing systems (1996)
Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60(6), 503–515 (1954). https://projecteuclid.org:443/euclid.bams/1183519147
Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_6
Bergman, D., Cire, A.A.: Theoretical insights and algorithmic tools for decision diagram-based optimization. Constraints 21(4), 533–556 (2016). https://doi.org/10.1007/s10601-016-9239-9
Bergman, D., Cire, A.A.: On finding the optimal BDD relaxation. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 41–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_4
Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds from binary decision diagrams. INFORMS J. Comput. 26(2), 253–268 (2014). https://doi.org/10.1287/ijoc.2013.0561
Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016). https://doi.org/10.1287/ijoc.2015.0648
Bergman, D., Cire, A.A., Sabharwal, A., Samulowitz, H., Saraswat, V., van Hoeve, W.J.: Parallel combinatorial optimization with decision diagrams. In: International Conference on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems, pp. 351–367 (2014)
Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10^{20}\) states and beyond. Inf. Comput. 98(2), 142–170 (1992). https://doi.org/10.1016/0890-5401(92)90017-A
Cire, A.A.: Decision diagrams for optimization. Ph.D. thesis, Carnegie Mellon University Tepper School of Business (2014)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)
Davarnia, D., van Hoeve, W.J.: Outer approximation for integer nonlinear programs via decision diagrams (2018)
Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M.: An optimal algorithm for the traveling salesman problem with time windows. Oper. Res. 43(2), 367–371 (1995)
Erdös, P., Rényi, A.: On random graphs i. Publicationes Mathematicae Debrecen 6, 290 (1959)
Gendreau, M., Hertz, A., Laporte, G., Stan, M.: A generalized insertion heuristic for the traveling salesman problem with time windows. Oper. Res. 46(3), 330–335 (1998)
Gillard, X., Schaus, P., Coppé, V.: Ddo, a generic and efficient framework for MDD-based optimization. Accepted at the International Joint Conference on Artificial Intelligence (IJCAI-20); DEMO track (2020)
Gonzalez, J.E., Cire, A.A., Lodi, A., Rousseau, L.M.: Integrated integer programming and decision diagram search tree with an application to the maximum independent set problem. Constraints 1–24 (2020)
Hadžić, T., Hooker, J., Tiedemann, P.: Propagating separable equalities in an MDD store. In: CPAIOR, pp. 318–322 (2008)
Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_23
Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_7
Hooker, J.N.: Job sequencing bounds from decision diagrams. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 565–578. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_36
Hooker, J.N.: Improved job sequencing bounds from decision diagrams. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 268–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_16
Hooker, J.: Discrete global optimization with binary decision diagrams. In: GICOLAG 2006 (2006)
Horn, M., M̃aschler, J., R̃aidl, G.R., R̃önnberg, E.: A*-based construction of decision diagrams for a prize-collecting scheduling problem. Comput. Oper. Res. 126, 105125 (2021). https://doi.org/10.1016/j.cor.2020.105125, http://www.sciencedirect.com/science/article/pii/S0305054820302422
Langevin, A., Desrochers, M., Desrosiers, J., Gélinas, S., Soumis, F.: A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows. Networks 23(7), 631–640 (1993)
López-Ibáñez, M., Blum, C.: Benchmark instances for the travelling salesman problem with time windows. Online (2020). http://lopez-ibanez.eu/tsptw-instances
Ohlmann, J.W., Thomas, B.W.: A compressed-annealing heuristic for the traveling salesman problem with time windows. INFORMS J. Comput. 19(1), 80–90 (2007)
Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transp. Sci. 32(1), 12–29 (1998)
Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part ii: genetic search. INFORMS J. Comput. 8(2), 165–172 (1996)
Tjandraatmadja, C.: Decision diagram relaxations for integer programming. Ph.D. thesis, Carnegie Mellon University Tepper School of Business (2018)
Tjandraatmadja, C., van Hoeve, W.J.: Target cuts from relaxed decision diagrams. INFORMS J. Comput. 31(2), 285–301 (2019). https://doi.org/10.1287/ijoc.2018.0830
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Gillard, X., Coppé, V., Schaus, P., Cire, A.A. (2021). Improving the Filtering of Branch-and-Bound MDD Solver. In: Stuckey, P.J. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2021. Lecture Notes in Computer Science(), vol 12735. Springer, Cham. https://doi.org/10.1007/978-3-030-78230-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-78230-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78229-0
Online ISBN: 978-3-030-78230-6
eBook Packages: Computer ScienceComputer Science (R0)