Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving the Filtering of Branch-and-Bound MDD Solver

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2021)

Abstract

This paper presents and evaluates two pruning techniques to reinforce the efficiency of constraint optimization solvers based on multi-valued decision-diagrams (MDD). It adopts the branch-and-bound framework proposed by Bergman et al. in 2016 to solve dynamic programs to optimality. In particular, our paper presents and evaluates the effectiveness of the local-bound (LocB) and rough upper-bound pruning (RUB). LocB is a new and effective rule that leverages the approximate MDD structure to avoid the exploration of non-interesting nodes. RUB is a rule to reduce the search space during the development of bounded-width-MDDs. The experimental study we conducted on the Maximum Independent Set Problem (MISP), Maximum Cut Problem (MCP), Maximum 2 Satisfiability (MAX2SAT) and the Traveling Salesman Problem with Time Windows (TSPTW) shows evidence indicating that rough-upper-bound and local-bound pruning have a high impact on optimization solvers based on branch-and-bound with MDDs. In particular, it shows that RUB delivers excellent results but requires some effort when defining the model. Also, it shows that LocB provides a significant improvement automatically; without necessitating any user-supplied information. Finally, it also shows that rough-upper-bound and local-bound pruning are not mutually exclusive, and their combined benefit supersedes the individual benefit of using each technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/xgillard/ddo.

  2. 2.

    An incremental refinement a.k.a. construction by separation procedure is detailed in [11, pp. 51–52] but we will not cover it here for the sake of conciseness.

  3. 3.

    Consequently, it also suffers from a potentially exponential time requirement in the worst case. Indeed, time is constant in the final number of nodes (unless the transition functions themselves are exponential in the input).

  4. 4.

    The very definition of these operators is problem-specific. However, [22] formally defines the conditions that are necessary to correctness.

  5. 5.

    https://github.com/xgillard/ddo.

  6. 6.

    Available online at: http://hdl.handle.net/2078.1/245322.

References

  1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11

    Chapter  Google Scholar 

  2. Ascheuer, N.: Hamiltonian path problems in the on-line optimization of flexible manufacturing systems (1996)

    Google Scholar 

  3. Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60(6), 503–515 (1954). https://projecteuclid.org:443/euclid.bams/1183519147

  4. Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_6

    Chapter  Google Scholar 

  5. Bergman, D., Cire, A.A.: Theoretical insights and algorithmic tools for decision diagram-based optimization. Constraints 21(4), 533–556 (2016). https://doi.org/10.1007/s10601-016-9239-9

  6. Bergman, D., Cire, A.A.: On finding the optimal BDD relaxation. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 41–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_4

    Chapter  Google Scholar 

  7. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds from binary decision diagrams. INFORMS J. Comput. 26(2), 253–268 (2014). https://doi.org/10.1287/ijoc.2013.0561

  8. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016). https://doi.org/10.1287/ijoc.2015.0648

  9. Bergman, D., Cire, A.A., Sabharwal, A., Samulowitz, H., Saraswat, V., van Hoeve, W.J.: Parallel combinatorial optimization with decision diagrams. In: International Conference on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems, pp. 351–367 (2014)

    Google Scholar 

  10. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10^{20}\) states and beyond. Inf. Comput. 98(2), 142–170 (1992). https://doi.org/10.1016/0890-5401(92)90017-A

  11. Cire, A.A.: Decision diagrams for optimization. Ph.D. thesis, Carnegie Mellon University Tepper School of Business (2014)

    Google Scholar 

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    Google Scholar 

  13. Davarnia, D., van Hoeve, W.J.: Outer approximation for integer nonlinear programs via decision diagrams (2018)

    Google Scholar 

  14. Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M.: An optimal algorithm for the traveling salesman problem with time windows. Oper. Res. 43(2), 367–371 (1995)

    Article  MathSciNet  Google Scholar 

  15. Erdös, P., Rényi, A.: On random graphs i. Publicationes Mathematicae Debrecen 6, 290 (1959)

    MathSciNet  MATH  Google Scholar 

  16. Gendreau, M., Hertz, A., Laporte, G., Stan, M.: A generalized insertion heuristic for the traveling salesman problem with time windows. Oper. Res. 46(3), 330–335 (1998)

    Article  Google Scholar 

  17. Gillard, X., Schaus, P., Coppé, V.: Ddo, a generic and efficient framework for MDD-based optimization. Accepted at the International Joint Conference on Artificial Intelligence (IJCAI-20); DEMO track (2020)

    Google Scholar 

  18. Gonzalez, J.E., Cire, A.A., Lodi, A., Rousseau, L.M.: Integrated integer programming and decision diagram search tree with an application to the maximum independent set problem. Constraints 1–24 (2020)

    Google Scholar 

  19. Hadžić, T., Hooker, J., Tiedemann, P.: Propagating separable equalities in an MDD store. In: CPAIOR, pp. 318–322 (2008)

    Google Scholar 

  20. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_23

    Chapter  Google Scholar 

  21. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_7

    Chapter  Google Scholar 

  22. Hooker, J.N.: Job sequencing bounds from decision diagrams. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 565–578. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_36

    Chapter  Google Scholar 

  23. Hooker, J.N.: Improved job sequencing bounds from decision diagrams. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 268–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_16

    Chapter  Google Scholar 

  24. Hooker, J.: Discrete global optimization with binary decision diagrams. In: GICOLAG 2006 (2006)

    Google Scholar 

  25. Horn, M., M̃aschler, J., R̃aidl, G.R., R̃önnberg, E.: A*-based construction of decision diagrams for a prize-collecting scheduling problem. Comput. Oper. Res. 126, 105125 (2021). https://doi.org/10.1016/j.cor.2020.105125, http://www.sciencedirect.com/science/article/pii/S0305054820302422

  26. Langevin, A., Desrochers, M., Desrosiers, J., Gélinas, S., Soumis, F.: A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows. Networks 23(7), 631–640 (1993)

    Article  MathSciNet  Google Scholar 

  27. López-Ibáñez, M., Blum, C.: Benchmark instances for the travelling salesman problem with time windows. Online (2020). http://lopez-ibanez.eu/tsptw-instances

  28. Ohlmann, J.W., Thomas, B.W.: A compressed-annealing heuristic for the traveling salesman problem with time windows. INFORMS J. Comput. 19(1), 80–90 (2007)

    Article  MathSciNet  Google Scholar 

  29. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transp. Sci. 32(1), 12–29 (1998)

    Article  Google Scholar 

  30. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part ii: genetic search. INFORMS J. Comput. 8(2), 165–172 (1996)

    Article  Google Scholar 

  31. Tjandraatmadja, C.: Decision diagram relaxations for integer programming. Ph.D. thesis, Carnegie Mellon University Tepper School of Business (2018)

    Google Scholar 

  32. Tjandraatmadja, C., van Hoeve, W.J.: Target cuts from relaxed decision diagrams. INFORMS J. Comput. 31(2), 285–301 (2019). https://doi.org/10.1287/ijoc.2018.0830

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Gillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gillard, X., Coppé, V., Schaus, P., Cire, A.A. (2021). Improving the Filtering of Branch-and-Bound MDD Solver. In: Stuckey, P.J. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2021. Lecture Notes in Computer Science(), vol 12735. Springer, Cham. https://doi.org/10.1007/978-3-030-78230-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78230-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78229-0

  • Online ISBN: 978-3-030-78230-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics