Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exact Real Computation of Solution Operators for Linear Analytic Systems of Partial Differential Equations

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12865))

Included in the following conference series:

  • 681 Accesses

Abstract

We devise and analyze the bit-cost of solvers for linear evolutionary systems of Partial Differential Equations (PDEs) with given analytic initial conditions. Our algorithms are rigorous in that they produce approximations to the solution up to guaranteed absolute error \(1/2^n\) for any desired number n of output bits. Previous work has shown that smooth (i.e. infinitely differentiable but non-analytic) initial data does not yield polynomial-time computable solutions unless it holds P=NP (or stronger complexity hypotheses). We first resume earlier complexity investigations of the Cauchy-Kovalevskaya Theorem about linear PDEs with analytic matrix coefficients: from qualitative polynomial-time solutions for any fixed polynomial-time computable analytic initial conditions, to quantitative parameterized bit-cost analyses for any given analytic initial data, as well as turn devised algorithms into computational practice. We secondly devise a parameterized polynomial-time solver for the Heat and the Schrödinger equation with given analytic initial data: PDEs not covered by Cauchy-Kovalevskaya. Reliable implementations and empirical performance evaluation (including testing on the Elasticity and Acoustic systems examples) in the Exact Real Computation (ERC) paradigm confirm the theoretical predictions and practical applicability of our algorithms. These involve new continuous abstract data types operating on power and Fourier series without rounding error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code for the implementation can be found on https://github.com/holgerthies/irram-pde.

  2. 2.

    For space reasons, we omit a detailed analysis of our experiments but some more information can be found at the github repository of our implementation.

References

  1. Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in polynomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_18

    Chapter  Google Scholar 

  2. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_18

    Chapter  Google Scholar 

  3. Brauße, F., Korovina, M., Müller, N.T.: Towards using exact real arithmetic for initial value problems. In: Mazzara, M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 61–74. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41579-6_6

    Chapter  Google Scholar 

  4. Collins, P., Graça, D.: Effective computability of solutions of ordinary differential equations the thousand monkeys approach. Electron. Notes Theoret. Comput. Sci. 221, 103–114 (2008)

    Article  MathSciNet  Google Scholar 

  5. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  6. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-61497-2

    Book  MATH  Google Scholar 

  7. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J. Comput. 25(1), 117–132 (1996)

    Article  MathSciNet  Google Scholar 

  8. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. In: Proceedings of the 42nd ACM Symposium on Theory of Computing. STOC 2010, pp. 495–502. ACM, New York (2010)

    Google Scholar 

  9. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of smoothness: parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015). https://doi.org/10.1016/j.jco.2015.05.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform operators on multidimensional analytic functions and ODE solving. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 223–236. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4_13

    Chapter  MATH  Google Scholar 

  11. Kawamura, A., Steinberg, F., Ziegler, M.: Complexity theory of (functions on) compact metric spaces. In: Proceedings of the 31st Annual Symposium on Logic in Computer Science, LICS, pp. 837–846. ACM (2016)

    Google Scholar 

  12. Kawamura, A., Thies, H., Ziegler, M.: Average-case polynomial-time computability of Hamiltonian dynamics. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  13. Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)

    Book  Google Scholar 

  14. Konečný, M., Duracz, J., Farjudian, A., Taha, W.: Picard method for enclosing odes with uncertain initial values. In: Proceedings of the 11th International Conference on Computability and Complexity in Analysis, 21–24 July 2014, pp. 41–42 (2014)

    Google Scholar 

  15. Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M.: Bit-complexity of solving systems of linear evolutionary partial differential equations. In: Santhanam, R., Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 223–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79416-3_13

    Chapter  Google Scholar 

  16. Koswara, I., Selivanova, S., Ziegler, M.: Computational complexity of real powering and improved solving linear differential equations. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 215–227. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_19

    Chapter  MATH  Google Scholar 

  17. Kreitz, C., Weihrauch, K.: Theory of representations. Theoret. Comput. Sci. 38, 35–53 (1985)

    Article  MathSciNet  Google Scholar 

  18. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_14

    Chapter  Google Scholar 

  19. Park, S., et al.: Foundation of computer (algebra) analysis systems: semantics, logic, programming, verification. https://arxiv.org/abs/1608.05787 (2020)

  20. Plum, M.: Computer-assisted proofs for semilinear elliptic boundary value problems. Japan J. Indust. Appl. Math. 26(2–3), 419–442 (2009). https://doi.org/10.1007/BF03186542

    Article  MathSciNet  MATH  Google Scholar 

  21. Thies, H.: Complexity theory and practice of integrating lipschitz-continuous functions in exact real arithmetic. Master’s thesis, TU Darmstadt, September 2011

    Google Scholar 

  22. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  23. Weihrauch, K.: Computational complexity on computable metric spaces. Math. Logic Q. 49(1), 3–21 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (grant 2017R1E1A1A03071032), by the International Research & Development Program of the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702), by the NRF Brain Pool program (grant 2019H1D3A2A02102240) and by JSPS KAKENHI Grant Number JP20K19744.

We thank Filippo Morabito for his lectures about PDEs on manifolds and Pieter Collins and Norbert Müller for helpful discussions on possibilities of implementing differential equations in ERC packages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Thies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Selivanova, S., Steinberg, F., Thies, H., Ziegler, M. (2021). Exact Real Computation of Solution Operators for Linear Analytic Systems of Partial Differential Equations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85165-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85164-4

  • Online ISBN: 978-3-030-85165-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics