Abstract
We devise and analyze the bit-cost of solvers for linear evolutionary systems of Partial Differential Equations (PDEs) with given analytic initial conditions. Our algorithms are rigorous in that they produce approximations to the solution up to guaranteed absolute error \(1/2^n\) for any desired number n of output bits. Previous work has shown that smooth (i.e. infinitely differentiable but non-analytic) initial data does not yield polynomial-time computable solutions unless it holds P=NP (or stronger complexity hypotheses). We first resume earlier complexity investigations of the Cauchy-Kovalevskaya Theorem about linear PDEs with analytic matrix coefficients: from qualitative polynomial-time solutions for any fixed polynomial-time computable analytic initial conditions, to quantitative parameterized bit-cost analyses for any given analytic initial data, as well as turn devised algorithms into computational practice. We secondly devise a parameterized polynomial-time solver for the Heat and the Schrödinger equation with given analytic initial data: PDEs not covered by Cauchy-Kovalevskaya. Reliable implementations and empirical performance evaluation (including testing on the Elasticity and Acoustic systems examples) in the Exact Real Computation (ERC) paradigm confirm the theoretical predictions and practical applicability of our algorithms. These involve new continuous abstract data types operating on power and Fourier series without rounding error.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The source code for the implementation can be found on https://github.com/holgerthies/irram-pde.
- 2.
For space reasons, we omit a detailed analysis of our experiments but some more information can be found at the github repository of our implementation.
References
Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in polynomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_18
Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_18
Brauße, F., Korovina, M., Müller, N.T.: Towards using exact real arithmetic for initial value problems. In: Mazzara, M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 61–74. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41579-6_6
Collins, P., Graça, D.: Effective computability of solutions of ordinary differential equations the thousand monkeys approach. Electron. Notes Theoret. Comput. Sci. 221, 103–114 (2008)
Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)
Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-61497-2
Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J. Comput. 25(1), 117–132 (1996)
Kawamura, A., Cook, S.: Complexity theory for operators in analysis. In: Proceedings of the 42nd ACM Symposium on Theory of Computing. STOC 2010, pp. 495–502. ACM, New York (2010)
Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of smoothness: parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015). https://doi.org/10.1016/j.jco.2015.05.001
Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform operators on multidimensional analytic functions and ODE solving. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 223–236. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4_13
Kawamura, A., Steinberg, F., Ziegler, M.: Complexity theory of (functions on) compact metric spaces. In: Proceedings of the 31st Annual Symposium on Logic in Computer Science, LICS, pp. 837–846. ACM (2016)
Kawamura, A., Thies, H., Ziegler, M.: Average-case polynomial-time computability of Hamiltonian dynamics. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)
Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)
Konečný, M., Duracz, J., Farjudian, A., Taha, W.: Picard method for enclosing odes with uncertain initial values. In: Proceedings of the 11th International Conference on Computability and Complexity in Analysis, 21–24 July 2014, pp. 41–42 (2014)
Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M.: Bit-complexity of solving systems of linear evolutionary partial differential equations. In: Santhanam, R., Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 223–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79416-3_13
Koswara, I., Selivanova, S., Ziegler, M.: Computational complexity of real powering and improved solving linear differential equations. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 215–227. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_19
Kreitz, C., Weihrauch, K.: Theory of representations. Theoret. Comput. Sci. 38, 35–53 (1985)
Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_14
Park, S., et al.: Foundation of computer (algebra) analysis systems: semantics, logic, programming, verification. https://arxiv.org/abs/1608.05787 (2020)
Plum, M.: Computer-assisted proofs for semilinear elliptic boundary value problems. Japan J. Indust. Appl. Math. 26(2–3), 419–442 (2009). https://doi.org/10.1007/BF03186542
Thies, H.: Complexity theory and practice of integrating lipschitz-continuous functions in exact real arithmetic. Master’s thesis, TU Darmstadt, September 2011
Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-9
Weihrauch, K.: Computational complexity on computable metric spaces. Math. Logic Q. 49(1), 3–21 (2003)
Acknowledgments
This work was supported by the National Research Foundation of Korea (grant 2017R1E1A1A03071032), by the International Research & Development Program of the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702), by the NRF Brain Pool program (grant 2019H1D3A2A02102240) and by JSPS KAKENHI Grant Number JP20K19744.
We thank Filippo Morabito for his lectures about PDEs on manifolds and Pieter Collins and Norbert Müller for helpful discussions on possibilities of implementing differential equations in ERC packages.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Selivanova, S., Steinberg, F., Thies, H., Ziegler, M. (2021). Exact Real Computation of Solution Operators for Linear Analytic Systems of Partial Differential Equations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-85165-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85164-4
Online ISBN: 978-3-030-85165-1
eBook Packages: Computer ScienceComputer Science (R0)