Abstract
Reaction Systems (RSs) are a successful natural computing framework inspired by chemical reaction networks. A RS consists of a set of entities and a set of reactions. Entities can enable or inhibit each reaction, and are produced by reactions or provided by the environment. In a previous paper, we defined an original labelled transition system (LTS) semantics for RSs in the structural operational semantics (SOS) style. This approach has several advantages: (i) it provides a formal specification of the RS dynamics that enables the reuse of many formal analysis techniques and favors the implementation of tools, and (ii) it facilitates the definition of extensions of the RS framework by simply modifying some of the SOS rules in a modular way. In this paper, we demonstrate the extensibility of the framework by defining two quantitative variants of RSs: with reaction delays/durations, and with concentration levels. We provide a prototype logic programming implementation and apply our tool to a RS model of \( Th \) cells differentiation in the immune system.
Research supported by University of Pisa PRA_2020_26 Metodi Informatici Integrati per la Biomedica, by MIUR PRIN Project 201784YSZ5 ASPRA–Analysis of Program Analyses, and by University of Sassari Fondo di Ateneo per la ricerca 2020.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
To ease the presentation, we impose \(n \in \mathbb {N}^+\) on the linear epression e to guarantee that its evaluation into a positive number, even when \(x=0\). Alternative choices are possible to relax this constraint.
- 2.
- 3.
References
Agnello, D., et al.: Cytokines and transcription factors that regulate t helper cell differentiation: new players and new insights. J. Clin. Immunol. 23(3), 147–161 (2003). https://doi.org/10.1023/A:1023381027062
Azimi, S.: Steady states of constrained reaction systems. Theor. Comput. Sci. 701(C), 20–26 (2017). https://doi.org/10.1016/j.tcs.2017.03.047
Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response. Fundam. Informaticae 131(3–4), 299–312 (2014). https://doi.org/10.3233/FI-2014-1016
Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Investigating dynamic causalities in reaction systems. Theor. Comput. Sci. 623, 114–145 (2016). https://doi.org/10.1016/j.tcs.2015.11.041
Barbuti, R., Gori, R., Milazzo, P.: Encoding Boolean networks into reaction systems for investigating causal dependencies in gene regulation. Theor. Comput. Sci. (2021). https://doi.org/10.1016/j.tcs.2020.07.031
Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(07), 1499–1517 (2011). https://doi.org/10.1142/S0129054111008842
Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction systems with duration. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 191–202. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20000-7_16
Brodo, L., Bruni, R., Falaschi, M.: A logical and graphical framework for reaction systems. Theor. Comput. Sci. 875, 1–27 (2021). https://doi.org/10.1016/j.tcs.2021.03.024
Corolli, L., Maj, C., Marinia, F., Besozzi, D., Mauri, G.: An excursion in reaction systems: from computer science to biology. Theor. Comput. Sci. 454, 95–108 (2012). https://doi.org/10.1016/j.tcs.2012.04.003
Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cambridge (2021)
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the ACM POPL 1977, pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973
Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Combinatorics of life and death for reaction systems. Int. J. Found. Comput. Sci. 21(3), 345–356 (2010). https://doi.org/10.1142/S0129054110007295
Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Functions defined by reaction systems. Int. J. Found. Comput. Sci. 22(1), 167–178 (2011). https://doi.org/10.1142/S0129054111007927
Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Informaticae 75(1–4), 263–280 (2007)
Hillston, J.: A compositional approach to performance modelling. Ph.D. Thesis, University of Edinburgh, UK (1994)
Mendoza, L.: A network model for the control of the differentiation process in th cells. Biosystems 84(2), 101–114 (2006). https://doi.org/10.1016/j.biosystems.2005.10.004
Męski, A., Koutny, M., Penczek, W.: Towards quantitative verification of reaction systems. In: Amos, M., Condon, A. (eds.) Unconventional Computation and Natural Computation, UCNC 2016. LNCS, vol. 9726, pp. 142–154. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_12
Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3
Murphy, K.M., Reiner, S.L.: Decision making in the immune system: the lineage decisions of helper t cells. Nat. Rev. Immunol. 2, 933–944 (2002). https://doi.org/10.1038/nri954
Okubo, F., Yokomori, T.: The computational capability of chemical reaction automata. Nat. Comput. 15(2), 215–224 (2015). https://doi.org/10.1007/s11047-015-9504-7
Pardini, G., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Compositional semantics and behavioural equivalences for reaction systems with restriction. Theor. Comput. Sci. 551, 1–21 (2014). https://doi.org/10.1016/j.tcs.2014.04.010
Plotkin, G.D.: An operational semantics for CSP. In: Bjørner, D. (ed.) Proceedings of the IFIP Working Conference on Formal Description of Programming Concepts- II, Garmisch-Partenkirchen, pp. 199–226. North-Holland (1982)
Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic Methods Program. 60–61, 17–139 (2004). https://doi.org/10.1016/j.jlap.2004.05.001
Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003). https://doi.org/10.1007/s00285-003-0211-0
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Brodo, L., Bruni, R., Falaschi, M., Gori, R., Levi, F., Milazzo, P. (2021). Exploiting Modularity of SOS Semantics to Define Quantitative Extensions of Reaction Systems. In: Aranha, C., Martín-Vide, C., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2021. Lecture Notes in Computer Science(), vol 13082. Springer, Cham. https://doi.org/10.1007/978-3-030-90425-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-90425-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90424-1
Online ISBN: 978-3-030-90425-8
eBook Packages: Computer ScienceComputer Science (R0)