Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Modularity of SOS Semantics to Define Quantitative Extensions of Reaction Systems

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2021)

Abstract

Reaction Systems (RSs) are a successful natural computing framework inspired by chemical reaction networks. A RS consists of a set of entities and a set of reactions. Entities can enable or inhibit each reaction, and are produced by reactions or provided by the environment. In a previous paper, we defined an original labelled transition system (LTS) semantics for RSs in the structural operational semantics (SOS) style. This approach has several advantages: (i) it provides a formal specification of the RS dynamics that enables the reuse of many formal analysis techniques and favors the implementation of tools, and (ii) it facilitates the definition of extensions of the RS framework by simply modifying some of the SOS rules in a modular way. In this paper, we demonstrate the extensibility of the framework by defining two quantitative variants of RSs: with reaction delays/durations, and with concentration levels. We provide a prototype logic programming implementation and apply our tool to a RS model of \( Th \) cells differentiation in the immune system.

Research supported by University of Pisa PRA_2020_26 Metodi Informatici Integrati per la Biomedica, by MIUR PRIN Project 201784YSZ5 ASPRA–Analysis of Program Analyses, and by University of Sassari Fondo di Ateneo per la ricerca 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To ease the presentation, we impose \(n \in \mathbb {N}^+\) on the linear epression e to guarantee that its evaluation into a positive number, even when \(x=0\). Alternative choices are possible to relax this constraint.

  2. 2.

    https://www3.diism.unisi.it/~falaschi/ReactionSystemsQuantities.

  3. 3.

    https://www3.diism.unisi.it/~falaschi/reactionsConcentrationLevels.txt.

References

  1. Agnello, D., et al.: Cytokines and transcription factors that regulate t helper cell differentiation: new players and new insights. J. Clin. Immunol. 23(3), 147–161 (2003). https://doi.org/10.1023/A:1023381027062

    Article  Google Scholar 

  2. Azimi, S.: Steady states of constrained reaction systems. Theor. Comput. Sci. 701(C), 20–26 (2017). https://doi.org/10.1016/j.tcs.2017.03.047

    Article  MathSciNet  MATH  Google Scholar 

  3. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response. Fundam. Informaticae 131(3–4), 299–312 (2014). https://doi.org/10.3233/FI-2014-1016

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Investigating dynamic causalities in reaction systems. Theor. Comput. Sci. 623, 114–145 (2016). https://doi.org/10.1016/j.tcs.2015.11.041

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbuti, R., Gori, R., Milazzo, P.: Encoding Boolean networks into reaction systems for investigating causal dependencies in gene regulation. Theor. Comput. Sci. (2021). https://doi.org/10.1016/j.tcs.2020.07.031

    Article  MathSciNet  MATH  Google Scholar 

  6. Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(07), 1499–1517 (2011). https://doi.org/10.1142/S0129054111008842

    Article  MathSciNet  MATH  Google Scholar 

  7. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction systems with duration. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 191–202. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20000-7_16

    Chapter  Google Scholar 

  8. Brodo, L., Bruni, R., Falaschi, M.: A logical and graphical framework for reaction systems. Theor. Comput. Sci. 875, 1–27 (2021). https://doi.org/10.1016/j.tcs.2021.03.024

    Article  MathSciNet  MATH  Google Scholar 

  9. Corolli, L., Maj, C., Marinia, F., Besozzi, D., Mauri, G.: An excursion in reaction systems: from computer science to biology. Theor. Comput. Sci. 454, 95–108 (2012). https://doi.org/10.1016/j.tcs.2012.04.003

    Article  MathSciNet  MATH  Google Scholar 

  10. Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cambridge (2021)

    MATH  Google Scholar 

  11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the ACM POPL 1977, pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

  12. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Combinatorics of life and death for reaction systems. Int. J. Found. Comput. Sci. 21(3), 345–356 (2010). https://doi.org/10.1142/S0129054110007295

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Functions defined by reaction systems. Int. J. Found. Comput. Sci. 22(1), 167–178 (2011). https://doi.org/10.1142/S0129054111007927

    Article  MathSciNet  MATH  Google Scholar 

  14. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Informaticae 75(1–4), 263–280 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Hillston, J.: A compositional approach to performance modelling. Ph.D. Thesis, University of Edinburgh, UK (1994)

    Google Scholar 

  16. Mendoza, L.: A network model for the control of the differentiation process in th cells. Biosystems 84(2), 101–114 (2006). https://doi.org/10.1016/j.biosystems.2005.10.004

    Article  Google Scholar 

  17. Męski, A., Koutny, M., Penczek, W.: Towards quantitative verification of reaction systems. In: Amos, M., Condon, A. (eds.) Unconventional Computation and Natural Computation, UCNC 2016. LNCS, vol. 9726, pp. 142–154. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_12

  18. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

    Book  MATH  Google Scholar 

  19. Murphy, K.M., Reiner, S.L.: Decision making in the immune system: the lineage decisions of helper t cells. Nat. Rev. Immunol. 2, 933–944 (2002). https://doi.org/10.1038/nri954

    Article  Google Scholar 

  20. Okubo, F., Yokomori, T.: The computational capability of chemical reaction automata. Nat. Comput. 15(2), 215–224 (2015). https://doi.org/10.1007/s11047-015-9504-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Pardini, G., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Compositional semantics and behavioural equivalences for reaction systems with restriction. Theor. Comput. Sci. 551, 1–21 (2014). https://doi.org/10.1016/j.tcs.2014.04.010

    Article  MathSciNet  MATH  Google Scholar 

  22. Plotkin, G.D.: An operational semantics for CSP. In: Bjørner, D. (ed.) Proceedings of the IFIP Working Conference on Formal Description of Programming Concepts- II, Garmisch-Partenkirchen, pp. 199–226. North-Holland (1982)

    Google Scholar 

  23. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic Methods Program. 60–61, 17–139 (2004). https://doi.org/10.1016/j.jlap.2004.05.001

    Article  MathSciNet  MATH  Google Scholar 

  24. Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003). https://doi.org/10.1007/s00285-003-0211-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Gori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brodo, L., Bruni, R., Falaschi, M., Gori, R., Levi, F., Milazzo, P. (2021). Exploiting Modularity of SOS Semantics to Define Quantitative Extensions of Reaction Systems. In: Aranha, C., Martín-Vide, C., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2021. Lecture Notes in Computer Science(), vol 13082. Springer, Cham. https://doi.org/10.1007/978-3-030-90425-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90425-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90424-1

  • Online ISBN: 978-3-030-90425-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics