Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Requirements for a Digital Twin for an Emergency Department

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2022)

Abstract

The Emergency Department (ED) represents the first stage of the path for some patients in a hospital. The JUNEAU project aims to propose a Digital Twin (DT) for the ED to both visualise the service behaviour in quasi real-time, forecast and anticipate its behaviour to control the “Emergency throughput time” indicator. This DT will be centred on the “patient pathway” view, which needs to first precise necessary data and information and decision support. The project will tackle this issue with a particular attention on exploring the DT architecture (with the help or holonic architecture), on coupling centralised and decentralised approaches to obtain a model as close as possible to the system dynamics and on managing DT evolution in a complex environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In French, JUNEAU stands for “JUmeau Numérique pour un sErvice d’Accueil des Urgences”, i.e.,  DT for an ED.

References

  1. Ajmi, F., Zgaya, H., Othman, S.B., Hammadi, S.: Agent-based dynamic optimization for managing the workflow of the patient’s pathway. Simul. Model. Pract. Theory 96, 101935 (2019)

    Article  Google Scholar 

  2. Angulo, C., Ortega, J.A., Gonzalez-Abril, L.: Towards a healthcare digital twin. In: Artificial Intelligence Research and Development, pp. 312–315. IOS Press (2019)

    Google Scholar 

  3. Augusto, V., Xie, X.: A modeling and simulation framework for health care systems. IEEE Trans. Syst. Man, Cybern. Syst. 44(1), 30–46 (2013)

    Article  Google Scholar 

  4. Ben-Tovim, D., Filar, J., Hakendorf, P., Qin, S., Thompson, C., Ward, D.: Hospital event simulation model: arrivals to discharge-design, development and application. Simul. Model. Pract. Theory 68, 80–94 (2016)

    Article  Google Scholar 

  5. Boyle, L.M., Marshall, A.H., Mackay, M.: A framework for developing generalisable discrete event simulation models of hospital emergency departments. Eur. J. Oper. Res. 302(1), 337–347 (2022)

    Article  MATH  Google Scholar 

  6. Cardin, O., Trentesaux, D., Thomas, A., Castagna, P., Berger, T., Bril El-Haouzi, H.: Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges. J. Intell. Manuf. 28(7), 1503–1517 (2017)

    Article  Google Scholar 

  7. Chase, J.G., et al.: Digital twins in critical care: what, when, how, where, why? IFAC-PapersOnLine 54(15), 310–315 (2021)

    Article  Google Scholar 

  8. Croatti, A., Gabellini, M., Montagna, S., Ricci, A.: On the integration of agents and digital twins in healthcare. J. Med. Syst. 44(9), 1–8 (2020)

    Article  Google Scholar 

  9. Curtis, C., Liu, C., Bollerman, T.J., Pianykh, O.S.: Machine learning for predicting patient wait times and appointment delays. J. Am. Coll. Radiol. 15(9), 1310–1316 (2018)

    Article  Google Scholar 

  10. Darema, F.: Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_86

    Chapter  Google Scholar 

  11. Frazzon, E.M., Kück, M., Freitag, M.: Data-driven production control for complex and dynamic manufacturing systems. CIRP Ann. 67(1), 515–518 (2018)

    Article  Google Scholar 

  12. Goodall, P., Sharpe, R., West, A.: A data-driven simulation to support remanufacturing operations. Comput. Ind. 105, 48–60 (2019)

    Article  Google Scholar 

  13. Huet, J.C.: Proposition d’une méthodologie de réingénierie pour le contrôle par le produit de systèmes manufacturiers: application au circuit du médicament d’un hôpital. Ph.D. thesis, Université Blaise Pascal-Clermont-Ferrand II (2011)

    Google Scholar 

  14. Itmi, M., Cardon, A.: Model for self-adaptive SoS and the control problem. In: 2010 5th International Conference on System of Systems Engineering, pp. 1–6. IEEE (2010)

    Google Scholar 

  15. Karakra, A., Fontanili, F., Lamine, E., Lamothe, J., Taweel, A.: Pervasive computing integrated discrete event simulation for a hospital digital twin. In: 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA) (2018). https://doi.org/10.1109/AICCSA.2018.8612796

  16. Kaushal, A., et al.: Evaluation of fast track strategies using agent-based simulation modeling to reduce waiting time in a hospital emergency department. Socioecon. Plann. Sci. 50, 18–31 (2015)

    Article  Google Scholar 

  17. Koestler, A.: The Ghost in the Machine. Hutchinson, London (1967)

    Google Scholar 

  18. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018)

    Article  Google Scholar 

  19. Lachtar, D.: Contribution des systèmes multi-agent à l’analyse de la performance organisationnelle d’une cellule de crise communale. Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris (2012)

    Google Scholar 

  20. Liu, Z., Rexachs, D., Epelde, F., Luque, E.: An agent-based model for quantitatively analyzing and predicting the complex behavior of emergency departments. J. Comput. Sci. 21, 11–23 (2017)

    Article  Google Scholar 

  21. Markdahl, J.: A geometric obstruction to almost global synchronization on riemannian manifolds. arXiv preprint arXiv:1808.00862 (2018)

  22. Melesse, T.Y., Di Pasquale, V., Riemma, S.: Digital twin models in industrial operations: a systematic literature review. Procedia Manuf. 42, 267–272 (2020)

    Article  Google Scholar 

  23. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017)

    Article  Google Scholar 

  24. Noyel, M., Thomas, P., Thomas, A., Charpentier, P.: Reconfiguration process for neuronal classification models: application to a quality monitoring problem. Comput. Ind. 83, 78–91 (2016)

    Article  Google Scholar 

  25. Patrone, C., Galli, G., Revetria, R.: A state of the art of digital twin and simulation supported by data mining in the healthcare sector. In: Advancing Technology Industrialization Through Intelligent Software Methodologies, Tools and Techniques, pp. 605–615. IOS Press (2019)

    Google Scholar 

  26. Pujo, P., Broissin, N., Ounnar, F.: PROSIS: An isoarchic structure for HMS control. Eng. Appl. Artif. Intell. 22(7), 1034–1045 (2009)

    Article  Google Scholar 

  27. Salmon, A., Rachuba, S., Briscoe, S., Pitt, M.: A structured literature review of simulation modelling applied to emergency departments: current patterns and emerging trends. Oper. Res. Health Care 19, 1–13 (2018)

    Article  Google Scholar 

  28. Semeraro, C., Lezoche, M., Panetto, H., Dassisti, M.: Digital twin paradigm: a systematic literature review. Comput. Ind. 130, 103469 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

The JUNEAU Project is going to be supported by the Agence Nationale de la Recherche of the French government between October 2022 and October 2026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Cheutet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouleux, G. et al. (2023). Requirements for a Digital Twin for an Emergency Department. In: Borangiu, T., Trentesaux, D., Leitão, P. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2022. Studies in Computational Intelligence, vol 1083. Springer, Cham. https://doi.org/10.1007/978-3-031-24291-5_11

Download citation

Publish with us

Policies and ethics