Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multimodal Machine Learning in Prognostics and Health Management of Manufacturing Systems

  • Chapter
  • First Online:
Artificial Intelligence for Smart Manufacturing

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Prognostics and health management (PHM) is a crucial enabler to reduce maintenance costs and enhance the availability and reliability of manufacturing systems. In the context of Industry 4.0, these systems become more complex and can be monitored by different types of sensors. The quality and completeness of data are crucial factors for the success of any PHM task in this paradigm. Here, we investigate the possibility of exploiting additional data sources in manufacturing besides monitoring sensors, e.g. production line cameras or maintenance reports. We first present the terminologies of multimodal learning and the potential it holds for industrial PHM. We then further explore the development and notable works in this field applied to other domains, look at the relevant works in PHM, and finally present a case study to demonstrate how multimodal learning can be performed to improve PHM processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gouriveau R, Medjaher K, Zerhouni N (2016) From prognostics and health systems management to predictive maintenance 1: monitoring and prognostics, vol 4

    Google Scholar 

  2. Xu G, Liu M, Wang J, Ma Y, Wang J, Li F, Shen W (2019) Data-driven fault diagnostics and prognostics for predictive maintenance: a brief overview. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pp 103–108. https://doi.org/10.1109/COASE.2019.8843068, ISSN: 2161-8089

  3. Jia X, Huang B, Feng J, Cai H, Lee J (2018) A review of PHM data competitions from 2008 to 2017 (2018)

    Google Scholar 

  4. Zhao P, Kurihara M, Tanaka J, Noda T, Chikuma S, Suzuki T (2017) Advanced correlation-based anomaly detection method for predictive maintenance. In: 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). https://doi.org/10.1109/ICPHM.2017.7998309

  5. Falk C, van de Sand R, Corasaniti S, Reiff-Stephan J (2021) A comparison study of data-driven anomaly detection approaches for industrial chillers. In: TH Wildau Engineering and Natural Sciences Proceedings 1 (2021). https://www.tib-op.org/ojs/index.php/th-wildau-ensp/article/view/33. https://doi.org/10.52825/thwildauensp.v1i.33. Accessed 23 May 2022

  6. Yan K, Ji Z, Shen W (2017) Online fault detection methods for chillers combining extended Kalman filter and recursive one-class SVM. Neurocomputing 228:205–212. https://doi.org/10.1016/j.neucom.2016.09.076

    Article  Google Scholar 

  7. Tian J, Azarian MH, Pecht M (2014) Anomaly detection using self-organizing maps-based k-nearest neighbor algorithm. In: PHM society European conference, vol 2, no 1. https://papers.phmsociety.org/index.php/phme/article/view/1554. https://doi.org/10.36001/phme.2014.v2i1.1554

  8. Hendrickx K, Meert W, Mollet Y, Gyselinck J, Cornelis B, Gryllias K, Davis J (2020) A general anomaly detection framework for fleet-based condition monitoring of machines. Mech Syst Signal Process 139:106585. https://doi.org/10.1016/j.ymssp.2019.106585. arXiv:1912.12941 [cs, eess, stat]

  9. Lu G, Liu J, Yan P (2018) Graph-based structural change detection for rotating machinery monitoring. Mech Syst Signal Process 99:73–82

    Article  Google Scholar 

  10. Lu G, Zhou Y, Lu C, Li X (2017) A novel framework of change-point detection for machine monitoring. Mech Syst Signal Process C 533–548. https://doi.org/10.1016/j.ymssp.2016.06.030

  11. Pittino F, Puggl M, Moldaschl T, Hirschl C (2020) Automatic anomaly detection on in-production manufacturing machines using statistical learning methods. Sensors 20(8):2344. https://doi.org/10.3390/s20082344 (Multidisciplinary Digital Publishing Institute)

  12. Schlechtingen M, Santos I (2011) Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection. Mech Syst Signal Process 25:1849–1875. https://doi.org/10.1016/j.ymssp.2010.12.007

    Article  Google Scholar 

  13. Bzymek A (2017) Application of selected method of anomaly detection in signals acquired during welding process monitoring. Int J Mater Prod Technol 54:249–258

    Article  Google Scholar 

  14. Yang Z, Baraldi P, Zio E (2021) A multi-branch deep neural network model for failure prognostics based on multimodal data. J Manuf Syst 59:42–50. https://doi.org/10.1016/j.jmsy.2021.01.007

    Article  Google Scholar 

  15. Tekin C, Atan O, Van Der Schaar M (2015) Discover the expert: context-adaptive expert selection for medical diagnosis. IEEE Trans Emerg Top Comput 3:220–234. https://doi.org/10.1109/TETC.2014.2386133

    Article  Google Scholar 

  16. Yoon J, Davtyan C, van der Schaar M (2016) Discovery and clinical decision support for personalized healthcare. IEEE J Biomed Health Inform 21:1133–1145

    Article  Google Scholar 

  17. Rahimi SA, Jamshidi A, Ruiz A, Aï-Kadi D (2016) A new dynamic integrated framework for surgical patients’ prioritization considering risks and uncertainties. Decis Support Syst 88:112–120

    Google Scholar 

  18. Cai Q, Wang H, Li Z, Liu X (2019) A survey on multimodal data-driven smart healthcare systems: Approaches and applications. IEEE Access 7:133583–133599. https://doi.org/10.1109/ACCESS.2019.2941419

  19. Download a data file | case school of engineering | case western reserve university (2021). https://engineering.case.edu/bearingdatacenter/download-data-file. Accessed 23 May 2022

  20. Chen X (2019) Tennessee Eastman simulation dataset. https://doi.org/10.21227/4519-z502

  21. Shao S (2022) Mechanical-datasets. https://github.com/cathysiyu/Mechanical-datasets, original-date: 2018-01-16T19:12:43Z

  22. Lee J, Qiu H, Yu G, Lin J (2007) Rexnord technical services, bearing data set, IMS, university of Cincinnati. In: NASA AMES prognostics data repository, NASA Ames, Moffett Field, CA

    Google Scholar 

  23. Nectoux P, Gouriveau R, Medjaher K, Ramasso E, Morello BC, Zerhouni N, Varnier C (2012) PRONOSTIA: an experimental platform for bearings accelerated degradation tests. In: IEEE International conference on prognostics and health management, PHM’12., Denver, Colorado

    Google Scholar 

  24. Sas A (2020) Airbus helicopter accelerometer dataset. https://www.research-collection.ethz.ch/handle/20.500.11850/415151. https://doi.org/10.3929/ethz-b-000415151, accepted: 2020-05-19T12:16:26Z publisher: ETH Zurich type: dataset

  25. Ahmad S, Lavin A, Purdy S, Agha Z (2017) Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262:134–147. https://doi.org/10.1016/j.neucom.2017.04.070

  26. Saxena A, Goebel K (2008) Turbofan engine degradation simulation data set. In: NASA Ames prognostics data repository, pp 1551–3203

    Google Scholar 

  27. Silverman BW (1981) Using kernel density estimates to investigate multimodality. J R Stat Soc: Ser B (Methodol) 43:97–99

    MathSciNet  Google Scholar 

  28. Leahy W, Sweller J (2011) Cognitive load theory, modality of presentation and the transient information effect. Appl Cogn Psychol 25:943–951

    Article  Google Scholar 

  29. Norris S (2019) Systematically working with multimodal data: research methods in multimodal discourse analysis. Wiley

    Google Scholar 

  30. Lahat D, Adali T, Jutten C (2015) Multimodal data fusion: an overview of methods, challenges, and prospects. Proc IEEE 103:1449–1477

    Article  Google Scholar 

  31. Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, Beijbom O (2020) Nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11621–11631

    Google Scholar 

  32. Chen C, Jafari R, Kehtarnavaz N (2015) Utd-mhad: a multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. In: IEEE international conference on image processing (ICIP). IEEE 2015:168–172

    Google Scholar 

  33. Tsiourti C, Weiss A, Wac K, Vincze M (2017) Designing emotionally expressive robots: a comparative study on the perception of communication modalities. In: Proceedings of the 5th international conference on human agent interaction, pp 213–222

    Google Scholar 

  34. Parcalabescu L, Trost N, Frank A (2021) What is multimodality? arXiv:2103.06304

  35. Srivastava N, Salakhutdinov RR (2012) Multimodal learning with deep boltzmann machines. Adv Neural Inf Proc Syst 25. https://papers.nips.cc/paper/2012/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html. Accessed 31 May 2021

  36. Morency L-P, Liang PP, Zadeh A (2022) Tutorial on multimodal machine learning. In: Proceedings of the 2022 conference of the North American chapter of the association for computational linguistics: human language technologies: tutorial abstracts. Association for Computational Linguistics, Seattle, United States, pp 33–38. https://aclanthology.org/2022.naacl-tutorials.5. https://doi.org/10.18653/v1/2022.naacl-tutorials.5

  37. Baltrušaitis T, Ahuja C, Morency L-P (2018) Multimodal machine learning: a survey and taxonomy. IEEE Trans Pattern Anal Mach Intell 41:423–443

    Article  Google Scholar 

  38. Blank M (1974) Cognitive functions of language in the preschool years. Dev Psychol 10:229

    Google Scholar 

  39. Roeper T, McNeill D (1973) Review of child language. Ann Rev Anthropol 2:127–137

    Article  Google Scholar 

  40. Keller-Cohen D (1978) Context in child language. Ann Rev Anthropol 7:453–482

    Article  Google Scholar 

  41. McNeill D (1985) So you think gestures are nonverbal? Psychol Rev 92:350–371. https://doi.org/10.1037/0033-295X.92.3.350 (American Psychological Association, US)

  42. Butterworth B, Hadar U (1989) Gesture, speech, and computational stages: a reply to McNeill

    Google Scholar 

  43. Picard RW (2000) Affective computing. MIT Press. Google-Books-ID: GaVncRTcb1gC

    Google Scholar 

  44. Toosi A, Bottino AG, Saboury B, Siegel E, Rahmim A (2021) A brief history of AI: how to prevent another winter (a critical review). PET Clinics 16:449–469

    Article  Google Scholar 

  45. Vesterinen E et al (2001) Affective computing. In: Digital media research seminar, Helsinki, Citeseer

    Google Scholar 

  46. Chang S-F, Chen W, Meng HJ, Sundaram H, Zhong D (1998) A fully automated content-based video search engine supporting spatiotemporal queries. IEEE Trans Circuits Syst Video Technol 8:602–615

    Article  Google Scholar 

  47. Popescu GV, Burdea GC, Trefftz H (2022) Multimodal interaction modeling. In: Handbook of virtual environments. CRC Press, pp 475–494

    Google Scholar 

  48. Zara A, Maffiolo V, Martin JC, Devillers L (2007) Collection and annotation of a corpus of human-human multimodal interactions: emotion and others anthropomorphic characteristics. In: International conference on affective computing and intelligent interaction. Springer, pp 464–475

    Google Scholar 

  49. Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. In: ICML

    Google Scholar 

  50. Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) Show, attend and tell: neural image caption generation with visual attention. In: International conference on machine learning, PMLR, pp 2048–2057

    Google Scholar 

  51. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30

    Google Scholar 

  52. LeCun Y, Haffner P, Bottou L, Bengio Y (1999) Object recognition with gradient-based learning. In: Shape, contour and grouping in computer vision. Springer, pp 319–345

    Google Scholar 

  53. Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMR, Bradley A, Papa JP, Belagiannis V et al (2018) Deep learning in medical image analysis and multimodal learning for clinical decision support: 4th international workshop, DLMIA 2018, and 8th international workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, volume 11045. Springer, Granada, Spain

    Google Scholar 

  54. Huang S-C, Pareek A, Seyyedi S, Banerjee I, Lungren MP (2020) Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit Med 3:1–9

    Google Scholar 

  55. Heiliger L, Sekuboyina A, Menze B, Egger J, Kleesiek J (2022) Beyond medical imaging—A review of multimodal deep learning in radiology. https://www.techrxiv.org/articles/preprint/Beyond_Medical_Imaging_-_A_Review_of_Multimodal_Deep_Learning_in_Radiology/19103432/1. https://doi.org/10.36227/techrxiv.19103432.v1 (TechRxiv)

  56. Behrad F, Abadeh MS (2022) An overview of deep learning methods for multimodal medical data mining. Expert Syst Appl 117006

    Google Scholar 

  57. Spasov SE, Passamonti L, Duggento A, Lio P, Toschi N (2018) A multi-modal convolutional neural network framework for the prediction of Alzheimer’s disease. In: Annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society. Annual international conference 2018, pp 1271–1274. https://doi.org/10.1109/EMBC.2018.8512468, PMID: 30440622

  58. Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R (2019) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292:60–66. https://doi.org/10.1148/radiol.2019182716. PMID: 31063083

    Article  Google Scholar 

  59. Yoo Y, Tang LY, Li DK, Metz L, Kolind S, Traboulsee AL, Tam RC (2019) Deep learning of brain lesion patterns and user-defined clinical and MRI features for predicting conversion to multiple sclerosis from clinically isolated syndrome. Comput Methods Biomechan Biomed Eng: Imaging Vis 7:250–259

    Google Scholar 

  60. Cao B, Zhang H, Wang N, Gao X, Shen D (2020) Auto-GAN: self-supervised collaborative learning for medical image synthesis. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, no 07, pp 10486–10493. https://doi.org/10.1609/aaai.v34i07.6619

  61. Li X, Jia M, Islam MT, Yu L, Xing L (2020) Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans Med Imaging 39:4023–4033. https://doi.org/10.1109/TMI.2020.3008871

    Article  Google Scholar 

  62. Hervella ÁS, Rouco J, Novo J, Ortega M (2019) Self-supervised deep learning for retinal vessel segmentation using automatically generated labels from multimodal data. In: 2019 international joint conference on neural networks (IJCNN). IEEE, pp 1–8

    Google Scholar 

  63. Chen H, Gao M, Zhang Y, Liang W, Zou X (2019) Attention-based multi-NMF deep neural network with multimodality data for breast cancer prognosis model. BioMed Res Int 2019:e9523719. https://doi.org/10.1155/2019/9523719 (Hindawi)

  64. Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, Khan MK (2020) Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. Tech Rep. http://arxiv.org/abs/2004.00038

  65. Lassau N, Ammari S, Chouzenoux E, Gortais H, Herent P, Devilder M, Soliman S, Meyrignac O, Talabard M-P, Lamarque J-P et al (2021) Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients. Nat Commun 12:1–11

    Article  Google Scholar 

  66. Wang X, Peng Y, Lu L, Lu Z, Summers RM (2018) TieNet: text-image embedding network for common thorax disease classification and reporting in chest x-rays. Tech Rep. http://arxiv.org/abs/1801.04334, https://doi.org/10.48550/arXiv.1801.04334

  67. Johnson A, Pollard T, Mark R, Berkowitz S, Horng S (2019) Mimic-cxr database. PhysioNet 10:13026 (C2JT1Q)

    Google Scholar 

  68. Bustos A, Pertusa A, Salinas J-M, de la Iglesia-Vayá M (2020) Padchest: a large chest x-ray image dataset with multi-label annotated reports. Med Image Anal 66:101797

    Google Scholar 

  69. Abacha AB, Hasan SA, Datla VV, Liu J, Demner-Fushman D, Müller H, VQA-Med: overview of the medical visual question answering task at ImageCLEF 2019. CLEF (Working Notes) 2

    Google Scholar 

  70. Spezialetti M, Placidi G, Rossi S (2020) Emotion recognition for human-robot interaction: Recent advances and future perspectives. Front Robot AI 7. https://www.frontiersin.org/article/10.3389/frobt.2020.532279. Accessed 01 June 2022

  71. Barros P, Weber C, Wermter S (2015) Emotional expression recognition with a cross-channel convolutional neural network for human-robot interaction, pp 582–587. https://doi.org/10.1109/HUMANOIDS.2015.7363421

  72. Val-Calvo M, Álvarez-Sánchez JR, Ferrández-Vicente JM, Fernández E (2020) Affective robot story-telling human-robot interaction: exploratory real-time emotion estimation analysis using facial expressions and physiological signals. IEEE Access 8:134051–134066

    Google Scholar 

  73. Inceoglu A, Aksoy EE, Ak AC, Sariel S (2021) Fino-net: a deep multimodal sensor fusion framework for manipulation failure detection. In: 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 6841–6847

    Google Scholar 

  74. Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J, Krueger G, Sutskever I (2021) Learning transferable visual models from natural language supervision. arXiv:2103.00020

  75. Alayrac J-B, Donahue J, Luc P, Miech A, Barr I, Hasson Y, Lenc K, Mensch A, Millican K, Reynolds M et al (2022) Flamingo: a visual language model for few-shot learning. arXiv:2204.14198

  76. Gao J, Li P, Chen Z, Zhang J (2020) A survey on deep learning for multimodal data fusion. Neural Comput 32:829–864. https://doi.org/10.1162/neco_a_01273

    Article  MathSciNet  MATH  Google Scholar 

  77. Gaw N, Yousefi S, Gahrooei MR (2021) Multimodal data fusion for systems improvement: a review. IISE Trans 1–19

    Google Scholar 

  78. Trigeorgis G, Nicolaou M, Zafeiriou S, Schuller B (2016) Deep canonical time warping, pp 5110–5118. https://doi.org/10.1109/CVPR.2016.552

  79. D’mello SK, Kory J (2015) A review and meta-analysis of multimodal affect detection systems. ACM Comput Surv (CSUR) 47:1–36

    Google Scholar 

  80. Wöllmer M, Kaiser M, Eyben F, Schuller B, Rigoll G (2013) LSTM-modeling of continuous emotions in an audiovisual affect recognition framework. Image Vis Comput 31:153–163

    Google Scholar 

  81. Liu F, Zhou L, Shen C, Yin J (2013) Multiple kernel learning in the primal for multimodal alzheimer’s disease classification. IEEE J Biomed Health Inform 18:984–990

    Google Scholar 

  82. Lafferty J, McCallum A, Pereira FC (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data

    Google Scholar 

  83. Pham H, Liang P, Manzini T, Morency L-P, Poczos B (2019) Found in translation: learning robust joint representations by cyclic translations between modalities. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 6892–6899. https://doi.org/10.1609/aaai.v33i01.33016892

  84. Marsella S, Xu Y, Lhommet M, Feng A, Scherer S, Shapiro A (2013) Virtual character performance from speech. In: Proceedings—SCA 2013: 12th ACM SIGGRAPH/Eurographics symposium on computer animation. https://doi.org/10.1145/2485895.2485900

  85. Ahuja C, Morency L-P (2019) Language2pose: natural language grounded pose forecasting, pp 719–728. https://doi.org/10.1109/3DV.2019.00084

  86. Zhang Y, Wallace B (2016) A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. Tech Rep. arxiv:1510.03820

  87. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation, arXiv:1505.04597

  88. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence

    Google Scholar 

  89. Zhang T, Shi M (2020) Multi-modal neuroimaging feature fusion for diagnosis of alzheimer’s disease. J Neurosci Methods 341:108795. https://doi.org/10.1016/j.jneumeth.2020.108795

  90. Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. arXiv:1211.5063

  91. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling

    Google Scholar 

  92. Staudemeyer RC, Morris ER (2019) Understanding LSTM—A tutorial into long short-term memory recurrent neural networks. arXiv:1909.09586

  93. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets, vol 27. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html. Accessed 01 June 2022

  94. Yuan Z, Zhang L, Duan L (2018) A novel fusion diagnosis method for rotor system fault based on deep learning and multi-sourced heterogeneous monitoring data. Meas Sci Technol 29:115005. https://doi.org/10.1088/1361-6501/aadfb3 (IOP Publishing)

  95. Kao H-Y, Wang Y-Y, Huang C-M, Hsu C-P (2019) Heterogeneous data ensemble learning in end-to-end diagnosis for IPTV. In: 2019 20th Asia-pacific network operations and management symposium (APNOMS), pp 1–6. https://doi.org/10.23919/APNOMS.2019.8892990. ISSN:2576-8565

  96. Ma Y, Guo Z, Su J, Chen Y, Du X, Yang Y, Li C, Lin Y, Geng Y (2014) Deep learning for fault diagnosis based on multi-sourced heterogeneous data. Int Conf Power Syst Technol 2014:740–745. https://doi.org/10.1109/POWERCON.2014.6993854

    Article  Google Scholar 

  97. Zhou F, Yang S, He Y, Chen D, Wen C (2021) Fault diagnosis based on deep learning by extracting inherent common feature of multi-source heterogeneous data. Proc Inst Mech Eng Part I: J Syst Control Eng 235:1858–1872. https://doi.org/10.1177/0959651820933380 (IMECHE)

  98. Marei M, Li W (2021) Cutting tool prognostics enabled by hybrid CNN-LSTM with transfer learning. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-07784-y

  99. Zhang X, Fujiwara T, Chandrasegaran S, Brundage M, Sexton T, Dima A, Ma K-L (2021) A visual analytics approach for the diagnosis of heterogeneous and multidimensional machine maintenance data. https://doi.org/10.1109/PacificVis52677.2021.00033

  100. Wang P, Liu Z, Gao RX, Guo Y (2019) Heterogeneous data-driven hybrid machine learning for tool condition prognosis. CIRP Annal 68:455–458. https://doi.org/10.1016/j.cirp.2019.03.007

    Article  Google Scholar 

  101. Ansari F, Glawar R, Nemeth T (2019) Prima: a prescriptive maintenance model for cyber-physical production systems. Int J Comput Integr Manuf 32:482–503. https://doi.org/10.1080/0951192X.2019.1571236

    Article  Google Scholar 

  102. Ansari F, Glawar R, Sihn W (2020) Prescriptive maintenance of CPPS by integrating multimodal data with dynamic Bayesian networks. In: Technologien für die intelligente automation. Springer, Berlin, Heidelberg, pp 1–8. https://doi.org/10.1007/978-3-662-59084-3_1

  103. Zacharaki A, Vafeiadis T, Kolokas N, Vaxevani A, Xu Y, Peschl M, Ioannidis D, Tzovaras D (2021) Reclaim: toward a new era of refurbishment and remanufacturing of industrial equipment. Front Artif Intell 3:570562

    Google Scholar 

  104. Albawi S, Mohammed TA, Al-Zawi S (2017) Understanding of a convolutional neural network. In: International conference on engineering and technology (ICET). IEEE, pp 1–6

    Google Scholar 

  105. Goldberg Y (2017) Neural network methods for natural language processing. Synth Lect Hum Lang Technol 10:1–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Jose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jose, S., Nguyen, K.T.P., Medjaher, K. (2023). Multimodal Machine Learning in Prognostics and Health Management of Manufacturing Systems. In: Tran, K.P. (eds) Artificial Intelligence for Smart Manufacturing. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-30510-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30510-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30509-2

  • Online ISBN: 978-3-031-30510-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics