Abstract
polymake is a software tool designed for the algorithmic treatment of polytopes and polyhedra. We give an overview of the functionality as well as of the structure. This paper can be seen as a first approximation to a polymake handbook.
The tutorial starts with the very basics and ends up with a few polymake applications to research problems. Then we present the main features of the system including the interfaces to other software products. polymake is free software; it is available on the Internet at http://www.math.tu-berlin.de/diskregeom/polymaka/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
O. Aichholzer 01play http://www.cis.tu-gran.ac.at/igi/oaich/infoOlpoly.htm1,1999.
N. AmentaComputational geometry softwareIn Goodman and O’Rourke [19], pp. 951–960.
D. Avislrs: A revised implementation of the reverse search vertex enumeration algorithmthis volume, 177–198.
D. Avis lrs Version 3.2ftp://mutt.cs.mcgill.ca/pub/C/lrs.html,Oct14 1998
D. Avis, D. Bremner, and R. SeidelHow good are convex hull algorithms?Comput. Geom. 7 (1997), no. 5–6, 265–301.
D. Avis and K. FukudaA pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra.Discrete Comput. Geom. 8 (1992), no. 3, 295–313.
M.M. Bayer and C.W. LeeCombinatorial aspects of convex polytopespp. 485–534, In Gruber and Wills [20], 1993.
G. Blind and R. BlindConvex polytopes without triangular facesIsrael J. Math. 71 (1990), no. 2, 129–134.
G. Blind and R. Blind Cubical 4-polytopes with few verticesGeom. Dedicata 66 (1997), no. 2, 223–231.
D. Bremner PolytopeBase Version 0.2 http://www.math.Washington.edu/“bremner/PolytopeBase Mar 4, 1999.
T. Christof and A. Loebel PORTA: POlyhedron Representation Transformation Algorithm, Version 1.3.2, http://www.iwr.uni-heidelberg.de/iwr/comopt/soft Nov 24, 1998.
T.H. Cormen, C.E. Leiserson, and R.L. RivestIntroduction to algorithmsMIT Press, 1990.
H.S.M. CoxeterRegular polytopesDover, 1973.
H. EdelsbrunnerAlgorithms in combinatorial geometrySpringer, 1987.
C.Young et alPOV-Ray: Persistence Of Vision, Version 3.1, http://www.povray.org, 1999.
F.J. Brandenburg et al Graphlet, Version 5.0, http://www.fmi.uni-passau.de/Graphlet Jan 11, 1999.
K. Fukuda cddplus, Version 0.76a, http://www.ifor.math.ethz.ch Jun 8,1999.
K. Fukuda and A. ProdonDouble description method revisitedLNCS, vol. 1120, 1996.
J.E. Goodman and J. O’Rourke (eds.)Handbook of discrete and computational geometryCRC Press, 1997.
P.M. Gruber and J.M. Wills (eds.)Handbook of convex geometryNorth-Holland, 1993.
J.E. HumphreysReflection groups and Coxeter groupsCambridge Univ. Press, 1992, corrected paper-back ed.
M. JoswigReconstructing a non-simple polytope from its graphthis Volume, 167–176.
M. Joswig and G.M. ZieglerNeighborly cubical polytopesDiscrete Comput. Geometry (to appear), math.CO/9812033.
G. KalaiLinear programming the simplex algorithm and simple polytopesMath. Program. Ser. B 79 (1997), 217–233.
D.E. KnuthThe art of computer programming I. Fundamental algorithms3rd ed., Addison-Wesley, 1997.
D.E. Knuth The art of computer programming III. Sorting and searching 2nd ed., Addison-Wesley, 1997.
S. Levy, T. Münzner, and M. Phillips, Geomview, Version 1.6.1, http://www.geom.umn.edu/software/geomview/Oct 30, 1997.
D.R. Musser and A. SainiSTL tutorial and reference guideAddison-Wesley, 1996.
J. Rambau TOPCOM, Version 0.2.0, http://www.zib.de/rambau/topcom.html Jul 28,1999.
J. Richter-Gebert and U.H. KortenkampThe interactive geometry software CinderellaSpringer, 1999.
B. StroustrupThe C++ programming languageAddison-Wesley, 1997, 3rd ed.
L. Wall, T. Christiansen, and R.L. SchwartzProgramming PerlO’Reilly, 1996, 2nd ed.
G.M. ZieglerLectures on polytopesSpringer, 1998, 2nd ed.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer Basel AG
About this chapter
Cite this chapter
Gawrilow, E., Joswig, M. (2000). polymake: a Framework for Analyzing Convex Polytopes. In: Kalai, G., Ziegler, G.M. (eds) Polytopes — Combinatorics and Computation. DMV Seminar, vol 29. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8438-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-0348-8438-9_2
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-7643-6351-2
Online ISBN: 978-3-0348-8438-9
eBook Packages: Springer Book Archive