Abstract
In this paper, we show that any scaled-up version of any discrete self-similar tree fractal does not strictly self-assemble, at any temperature, in Winfree’s abstract Tile Assembly Model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kautz, S.M., Lathrop, J.I.: Self-assembly of the discrete Sierpinski carpet and related fractals. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 78–87. Springer, Heidelberg (2009)
Kautz, S.M., Shutters, B.: Self-assembling rulers for approximating generalized sierpinski carpets. Algorithmica 67(2), 207–233 (2013)
Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theoretical Computer Science 410, 384–405 (2009)
Lutz, J.H., Shutters, B.: Approximate self-assembly of the sierpinski triangle. Theory Comput. Syst. 51(3), 372–400 (2012)
Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods, D.: Intrinsic universality in tile self-assembly requires cooperation. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 752–771 (2014)
Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals. Natural Computing 1, 135–172 (2010)
Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph.D. thesis, University of Southern California (December 2001)
Seeman, N.C.: Nucleic-acid junctions and lattices. Journal of Theoretical Biology 99, 237–247 (1982)
Seeman, N.C.: De novo design of sequences for nucleic acid structural engineering. Journal of Biomolecular Structural Dynamics 8, 573–581 (1990)
Wang, H.: Proving theorems by pattern recognition – II. The Bell System Technical Journal XL(1), 1–41 (1961)
Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology (June 1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Barth, K., Furcy, D., Summers, S.M., Totzke, P. (2014). Scaled Tree Fractals Do not Strictly Self-assemble. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-08123-6_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08122-9
Online ISBN: 978-3-319-08123-6
eBook Packages: Computer ScienceComputer Science (R0)