Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scaled Tree Fractals Do not Strictly Self-assemble

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

In this paper, we show that any scaled-up version of any discrete self-similar tree fractal does not strictly self-assemble, at any temperature, in Winfree’s abstract Tile Assembly Model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kautz, S.M., Lathrop, J.I.: Self-assembly of the discrete Sierpinski carpet and related fractals. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 78–87. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Kautz, S.M., Shutters, B.: Self-assembling rulers for approximating generalized sierpinski carpets. Algorithmica 67(2), 207–233 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theoretical Computer Science 410, 384–405 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lutz, J.H., Shutters, B.: Approximate self-assembly of the sierpinski triangle. Theory Comput. Syst. 51(3), 372–400 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods, D.: Intrinsic universality in tile self-assembly requires cooperation. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 752–771 (2014)

    Google Scholar 

  6. Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals. Natural Computing 1, 135–172 (2010)

    Article  MathSciNet  Google Scholar 

  7. Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph.D. thesis, University of Southern California (December 2001)

    Google Scholar 

  8. Seeman, N.C.: Nucleic-acid junctions and lattices. Journal of Theoretical Biology 99, 237–247 (1982)

    Article  Google Scholar 

  9. Seeman, N.C.: De novo design of sequences for nucleic acid structural engineering. Journal of Biomolecular Structural Dynamics 8, 573–581 (1990)

    Article  Google Scholar 

  10. Wang, H.: Proving theorems by pattern recognition – II. The Bell System Technical Journal XL(1), 1–41 (1961)

    Google Scholar 

  11. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology (June 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Barth, K., Furcy, D., Summers, S.M., Totzke, P. (2014). Scaled Tree Fractals Do not Strictly Self-assemble. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics