Abstract
Keyword search is by far the most popular technique for searching linked data on the web. The simplicity of keyword search on data graphs comes with at least two drawbacks: difficulty in identifying results relevant to the user intent among an overwhelming number of candidates and performance scalability problems. In this paper, we claim that result ranking and top-k processing which adapt schema unaware IR-based techniques to loosely structured data are not sufficient to address these drawbacks and efficiently produce answers of high quality. We present an alternative solution which hierarchically clusters the results based on a semantic interpretation of the keyword instances and takes advantage of relevance feedback from the user. Our clustering hierarchy exploits graph patterns which are structured queries clustering together result graphs of the same structure and represent possible interpretations for the keyword query. We present an algorithm which computes r-radius Steiner patterns graphs using exclusively the structural summary of the data graph. The user selects relevant pattern graphs by exploring only a small portion of the hierarchy supported by a ranking of the hierarchy components.Our experimental results show the feasibility of our system by demonstrating short reach times and efficient computation of the relevant results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aksoy, C., Dass, A., Theodoratos, D., Wu, X.: Clustering query results to support keyword search on tree data. In: Li, F., Li, G., Hwang, S.-w., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 213–224. Springer, Heidelberg (2014)
Aksoy, C., Dimitriou, A., Theodoratos, D., Wu, X.: xReason: A semantic approach that reasons with patterns to answer XML keyword queries. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825, pp. 299–314. Springer, Heidelberg (2013)
Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and browsing in databases using BANKS. In: ICDE, pp. 431–440 (2002)
Dimitriou, A., Theodoratos, D.: Efficient keyword search on large tree structured datasets. In: KEYS, pp. 63–74 (2012)
Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected trees in databases. In: ICDE, pp. 836–845 (2007)
Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: CIKM, pp. 237–242 (2011)
Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching RDF graphs with sparql and keywords. IEEE Data Eng. Bull., 16–24 (2010)
Fu, H., Gao, S., Anyanwu, K.: Disambiguating keyword queries on RDF databases using “Deep” segmentation. In: ICSC, pp. 236–243 (2010)
Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data graphs. In: SIGMOD, pp. 927–940 (2008)
Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: ranked keyword search over XML documents. In: SIGMOD, pp. 16–27 (2003)
He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: SIGMOD, pp. 305–316 (2007)
Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.: Keyword proximity search in XML trees. IEEE Trans. Knowl. Data Eng., 525–539 (2006)
Jiang, M., Chen, Y., Chen, J., Du, X.: Interactive predicate suggestion for keyword search on RDF graphs. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA 2011, Part II. LNCS, vol. 7121, pp. 96–109. Springer, Heidelberg (2011)
Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirectional expansion for keyword search on graph databases. In: VLDB, pp. 505–516 (2005)
Kargar, M., An, A.: Keyword search in graphs: Finding r-cliques. In: VLDB, pp. 681–692 (2011)
Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for branching path queries. In: SIGMOD Conference, pp. 133–144 (2002)
Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., Krishnapuram, R.: A hierarchical monothetic document clustering algorithm for summarization and browsing search results. In: WWW, pp. 658–665 (2004)
Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: SIGMOD, pp. 903–914 (2008)
Liu, X., Wan, C., Chen, L.: Returning clustered results for keyword search on XML documents. IEEE Trans. Knowl. Data Eng., 1811–1825 (2011)
Liu, Z., Chen, Y.: Processing keyword search on XML: a survey. World Wide Web, 671–707 (2011)
Qin, L., Yu, J.X., Chang, L., Tao, Y.: Querying communities in relational databases. In: ICDE, pp. 724–735 (2009)
Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: ICDE, pp. 405–416 (2009)
Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2semantic: A lightweight keyword interface to semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584–598. Springer, Heidelberg (2008)
Xu, Y., Papakonstantinou, Y.: Efficient LCA based keyword search in XML data. In: EDBT, pp. 535–546 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D. (2014). Exploiting Semantic Result Clustering to Support Keyword Search on Linked Data. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2014. WISE 2014. Lecture Notes in Computer Science, vol 8786. Springer, Cham. https://doi.org/10.1007/978-3-319-11749-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-11749-2_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11748-5
Online ISBN: 978-3-319-11749-2
eBook Packages: Computer ScienceComputer Science (R0)