Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Semantic Result Clustering to Support Keyword Search on Linked Data

  • Conference paper
Web Information Systems Engineering – WISE 2014 (WISE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8786))

Included in the following conference series:

  • 1596 Accesses

Abstract

Keyword search is by far the most popular technique for searching linked data on the web. The simplicity of keyword search on data graphs comes with at least two drawbacks: difficulty in identifying results relevant to the user intent among an overwhelming number of candidates and performance scalability problems. In this paper, we claim that result ranking and top-k processing which adapt schema unaware IR-based techniques to loosely structured data are not sufficient to address these drawbacks and efficiently produce answers of high quality. We present an alternative solution which hierarchically clusters the results based on a semantic interpretation of the keyword instances and takes advantage of relevance feedback from the user. Our clustering hierarchy exploits graph patterns which are structured queries clustering together result graphs of the same structure and represent possible interpretations for the keyword query. We present an algorithm which computes r-radius Steiner patterns graphs using exclusively the structural summary of the data graph. The user selects relevant pattern graphs by exploring only a small portion of the hierarchy supported by a ranking of the hierarchy components.Our experimental results show the feasibility of our system by demonstrating short reach times and efficient computation of the relevant results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aksoy, C., Dass, A., Theodoratos, D., Wu, X.: Clustering query results to support keyword search on tree data. In: Li, F., Li, G., Hwang, S.-w., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 213–224. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Aksoy, C., Dimitriou, A., Theodoratos, D., Wu, X.: xReason: A semantic approach that reasons with patterns to answer XML keyword queries. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825, pp. 299–314. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and browsing in databases using BANKS. In: ICDE, pp. 431–440 (2002)

    Google Scholar 

  4. Dimitriou, A., Theodoratos, D.: Efficient keyword search on large tree structured datasets. In: KEYS, pp. 63–74 (2012)

    Google Scholar 

  5. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected trees in databases. In: ICDE, pp. 836–845 (2007)

    Google Scholar 

  6. Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: CIKM, pp. 237–242 (2011)

    Google Scholar 

  7. Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching RDF graphs with sparql and keywords. IEEE Data Eng. Bull., 16–24 (2010)

    Google Scholar 

  8. Fu, H., Gao, S., Anyanwu, K.: Disambiguating keyword queries on RDF databases using “Deep” segmentation. In: ICSC, pp. 236–243 (2010)

    Google Scholar 

  9. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data graphs. In: SIGMOD, pp. 927–940 (2008)

    Google Scholar 

  10. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: ranked keyword search over XML documents. In: SIGMOD, pp. 16–27 (2003)

    Google Scholar 

  11. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: SIGMOD, pp. 305–316 (2007)

    Google Scholar 

  12. Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.: Keyword proximity search in XML trees. IEEE Trans. Knowl. Data Eng., 525–539 (2006)

    Google Scholar 

  13. Jiang, M., Chen, Y., Chen, J., Du, X.: Interactive predicate suggestion for keyword search on RDF graphs. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA 2011, Part II. LNCS, vol. 7121, pp. 96–109. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirectional expansion for keyword search on graph databases. In: VLDB, pp. 505–516 (2005)

    Google Scholar 

  15. Kargar, M., An, A.: Keyword search in graphs: Finding r-cliques. In: VLDB, pp. 681–692 (2011)

    Google Scholar 

  16. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for branching path queries. In: SIGMOD Conference, pp. 133–144 (2002)

    Google Scholar 

  17. Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., Krishnapuram, R.: A hierarchical monothetic document clustering algorithm for summarization and browsing search results. In: WWW, pp. 658–665 (2004)

    Google Scholar 

  18. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: SIGMOD, pp. 903–914 (2008)

    Google Scholar 

  19. Liu, X., Wan, C., Chen, L.: Returning clustered results for keyword search on XML documents. IEEE Trans. Knowl. Data Eng., 1811–1825 (2011)

    Google Scholar 

  20. Liu, Z., Chen, Y.: Processing keyword search on XML: a survey. World Wide Web, 671–707 (2011)

    Google Scholar 

  21. Qin, L., Yu, J.X., Chang, L., Tao, Y.: Querying communities in relational databases. In: ICDE, pp. 724–735 (2009)

    Google Scholar 

  22. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: ICDE, pp. 405–416 (2009)

    Google Scholar 

  23. Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2semantic: A lightweight keyword interface to semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584–598. Springer, Heidelberg (2008)

    Google Scholar 

  24. Xu, Y., Papakonstantinou, Y.: Efficient LCA based keyword search in XML data. In: EDBT, pp. 535–546 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D. (2014). Exploiting Semantic Result Clustering to Support Keyword Search on Linked Data. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2014. WISE 2014. Lecture Notes in Computer Science, vol 8786. Springer, Cham. https://doi.org/10.1007/978-3-319-11749-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11749-2_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11748-5

  • Online ISBN: 978-3-319-11749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics