Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Fuzzy System for Concept-Level Sentiment Analysis

  • Conference paper
  • First Online:
Semantic Web Evaluation Challenge (SemWebEval 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 475))

Included in the following conference series:

Abstract

An emerging field within Sentiment Analysis concerns the investigation about how sentiment concepts have to be adapted with respect to the different domains in which they are used. In the context of the Concept-Level Sentiment Analysis Challenge, we presented a system whose aims are twofold: (i) the implementation of a learning approach able to model fuzzy functions used for building the relationships graph representing the appropriateness between sentiment concepts and different domains (Task 1); and (ii) the development of a semantic resource based on the connection between an extended version of WordNet, SenticNet, and ConceptNet, that has been used both for extracting concepts (Task 2) and for classifying sentences within specific domains (Task 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://wordnet.princeton.edu/

  2. 2.

    http://sentic.net/

  3. 3.

    http://conceptnet5.media.mit.edu/

  4. 4.

    http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

  5. 5.

    Detailed results and tool demo are available at http://dkmtools.fbk.eu/moki/demo/mdfsa/mdfsa_demo.html.

References

  1. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Philadelphia, Association for Computational Linguistics, pp. 79–86 (July 2002)

    Google Scholar 

  2. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Carroll, J.A., van den Bosch, A., Zaenen, A. (eds.) ACL, The Association for Computational Linguistics (2007)

    Google Scholar 

  3. Bollegala, D., Weir, D.J., Carroll, J.A.: Cross-domain sentiment classification using a sentiment sensitive thesaurus. IEEE Trans. Knowl. Data Eng. 25(8), 1719–1731 (2013)

    Article  Google Scholar 

  4. Xia, R., Zong, C., Hu, X., Cambria, E.: Feature ensemble plus sample selection: domain adaptation for sentiment classification. IEEE Int. Syst. 28(3), 10–18 (2013)

    Article  Google Scholar 

  5. Ponomareva, N., Thelwall, M.: Semi-supervised vs. cross-domain graphs for sentiment analysis. In: Angelova, G., Bontcheva, K., Mitkov, R. (eds.) RANLP, RANLP 2011 Organising Committee/ACL, pp. 571–578 (2013)

    Google Scholar 

  6. Tsai, A.C.R., Wu, C.E., Tsai, R.T.H., Hsu, J.Y.: Building a concept-level sentiment dictionary based on commonsense knowledge. IEEE Int. Syst. 28(2), 22–30 (2013)

    Article  Google Scholar 

  7. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Kipfer, B.A.: Roget’s 21st Century Thesaurus, vol. 3. Random House, New York (2005)

    Google Scholar 

  9. Cambria, E., Speer, R., Havasi, C., Hussain, A.: Senticnet: a publicly available semantic resource for opinion mining. In: AAAI Fall Symposium: Commonsense Knowledge. Volume FS-10-02 of AAAI Technical report, AAAI (2010)

    Google Scholar 

  10. Liu, H., Singh, P.: ConceptNet: a practical commonsense reasoning tool-kit. BT Technol. J. 22(4), 211–226 (2004)

    Article  MathSciNet  Google Scholar 

  11. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM TIST 2(3), 27 (2011)

    Google Scholar 

  13. McCallum, A.K.: Mallet: a machine learning for language toolkit (2002). http://mallet.cs.umass.edu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Dragoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C. (2014). A Fuzzy System for Concept-Level Sentiment Analysis. In: Presutti, V., et al. Semantic Web Evaluation Challenge. SemWebEval 2014. Communications in Computer and Information Science, vol 475. Springer, Cham. https://doi.org/10.1007/978-3-319-12024-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12024-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12023-2

  • Online ISBN: 978-3-319-12024-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics