Abstract
This paper addresses the issues of constructing zero- knowledge arguments of knowledge (ZKAOK) with properties such as a small number of rounds, public-coin and strict-polynomial-time simulation and extraction, and shows the existence of the following systems for NP for the first time under some assumptions.
-
There exists a 4-round auxiliary-input ZKAOK with strict-polynomial-time simulation and extraction. Previously even combining the strict-polynomial-time simulation and extraction construction by Barak and Lindell (STOC’02) with the recent 4-round zero-knowledge argument by Pandey et al.[ePrint’13] brings such a construction using at least 6 rounds.
-
There exists a 3-round bounded-auxiliary-input ZKAOK with strict-polynomial-time simulation and extraction. Previously the extractor of the 3-round construction by Bitansky et al.[STOC’14] runs in expected-polynomial-time.
-
There exists a 2-round public-coin bounded-auxiliary-input ZKAOK with strict-polynomial-time simulation which extractor works for bounded-size provers and runs in strict-polynomial-time.
We demonstrate a new non-black-box extraction technique based on differing-input obfuscation due to Ananth et al.[ePrint’13] to achieve strict-polynomial-time extraction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive 2013, 689 (2013)
Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)
Barak, B., Goldreich, O.: Universal arguments and their applications. In: IEEE Conference on Computational Complexity, pp. 194–203 (2002)
Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction. In: Reif, J.H. (ed.) STOC, pp. 484–493. ACM (2002)
Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowledge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)
Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (2003)
Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for snarks and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC, pp. 111–120. ACM (2013)
Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way functions. In: Shmoys, D.B. (ed.) STOC, pp. 505–514. ACM (2014)
Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO, pp. 11–15. U. C. Santa Barbara, Dept. of Elec. and Computer Eng., ECE Report No 82-04 (1981)
Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, pp. 1444–1451 (1987)
Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)
Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)
Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Ortiz, H. (ed.) STOC, pp. 416–426. ACM (1990)
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49. IEEE Computer Society (2013)
Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014)
Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for np. J. Cryptology 9(3), 167–190 (1996)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In: FOCS, pp. 174–187. IEEE Computer Society (1986)
Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptology 7(1), 1–32 (1994)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)
Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg (1998)
Katz, J.: Which languages have 4-round zero-knowledge proofs? In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Heidelberg (2008)
Lindell, Y.: A note on constant-round zero-knowledge proofs of knowledge. J. Cryptology 26(4), 638–654 (2013)
Micali, S.: Cs proofs (extended abstracts). In: FOCS, pp. 436–453. IEEE Computer Society (1994)
Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resistance. Electronic Colloquium on Computational Complexity (ECCC)Â 19, 164 (2012), http://dblp.uni-trier.de/db/journals/eccc/eccc19.html#OstrovskyV12
Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simulation and four message concurrent zero knowledge for np. Cryptology ePrint Archive, Report 2013/754 (2013), http://eprint.iacr.org/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ding, N. (2014). Obfuscation-Based Non-Black-Box Extraction and Constant-Round Zero-Knowledge Arguments of Knowledge. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds) Information Security. ISC 2014. Lecture Notes in Computer Science, vol 8783. Springer, Cham. https://doi.org/10.1007/978-3-319-13257-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-13257-0_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13256-3
Online ISBN: 978-3-319-13257-0
eBook Packages: Computer ScienceComputer Science (R0)