Abstract
Scaffold filling is an interesting combinatorial optimization problem from genome sequencing. The one-sided scaffold filling problem can be stated as: given an incomplete scaffold with some genes missing and a reference scaffold, the purpose is to insert the missing genes back into the incomplete scaffold( called ”filling the scaffold”), such that the number of common adjacencies between the filled scaffold and the reference scaffold is maximized. This problem is NP-hard for genome with duplicated genes, and can be approximated within 1.25 by a very complicated combinatorial method. In this paper, we firstly improve the approximation factor to 6/5 by not-oblivious local search; then we show that this problem is MAX-SNP-complete.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angibaud, S., Fertin, G., Rusu, I., Thevenin, A., Vialette, S.: On the approximability of comparing genomes with duplicates. J. Graph Algorithms and Applications 13(1), 19–53 (2009)
Blin, G., Fertin, G., Sikora, F., Vialette, S.: The Exemplar Breakpoint Distance for non-trivial genomes cannot be approximated. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 357–368. Springer, Heidelberg (2009)
Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In: Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA 2002), pp. 667–676 (2002)
Chen, Z., Fowler, R., Fu, B., Zhu, B.: On the inapproximability of the exemplar conserved interval distance problem of genomes. J. Combinatorial Optimization 15(2), 201–221 (2008)
Khanna, S., Motwani, R., Madhu, S., Umesh, V.: On syntactic versus computational views of approximability. SIAM Journal on Computing 28(1), 164–191 (1998)
Chen, Z., Fu, B., Xu, J., Yang, B., Zhao, Z., Zhu, B.: Non-breaking similarity of genomes with gene repetitions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 119–130. Springer, Heidelberg (2007)
Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 291–302. Springer, Heidelberg (2006)
Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partitioning problem: hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 484–495. Springer, Heidelberg (2004). also in: The Electronic Journal of Combinatorics 12 (2005), paper R50
Jiang, M.: The zero exemplar distance problem. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 74–82. Springer, Heidelberg (2010)
Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint distance. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 83–92. Springer, Heidelberg (2010)
Jiang, H., Zhong, F., Zhu, B.: Filling scaffolds with gene repetitions: maximizing the number of adjacencies. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 55–64. Springer, Heidelberg (2011)
Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and related distances. IEEE/ACM Trans. Bioinformatics and Comput. Biology 9(4), 1220–1229 (2012)
Muñoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold filling, contig fusion and gene order comparison. BMC Bioinformatics 11, 304 (2010)
Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)
Liu, N., Jiang, H., Zhu, D., Zhu, B.: An Improved Approximation Algorithm for Scaffold Filling to Maximize the Common Adjacencies. IEEE/ACM Trans. Comput. Biology Bioinform. 10(4), 905–913 (2013)
Liu, N., Zhu, D.: The algorithm for the two-sided scaffold filling problem. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 236–247. Springer, Heidelberg (2013)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)
Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inform. Process. Lett. 37, 27–35 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Jiang, H., Ma, J., Luan, J., Zhu, D. (2015). Approximation and Nonapproximability for the One-Sided Scaffold Filling Problem. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-21398-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21397-2
Online ISBN: 978-3-319-21398-9
eBook Packages: Computer ScienceComputer Science (R0)