Abstract
The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. Non-contrast enhanced cardiac CT is considered a reference for quantification of CAC. Recently, it has been shown that CAC may be quantified in cardiac CT angiography (CCTA). We present a pattern recognition method that automatically identifies and quantifies CAC in CCTA. The study included CCTA scans of 50 patients equally distributed over five cardiovascular risk categories. CAC in CCTA was identified in two stages. In the first stage, potential CAC voxels were identified using a convolutional neural network (CNN). In the second stage, candidate CAC lesions were extracted based on the CNN output for analyzed voxels and thereafter described with a set of features and classified using a Random Forest. Ten-fold stratified cross-validation experiments were performed. CAC volume was quantified per patient and compared with manual reference annotations in the CCTA scan. Bland-Altman bias and limits of agreement between reference and automatic annotations were -15 (-198–168) after the first stage and -3 (-86 – 79) after the second stage. The results show that CAC can be automatically identified and quantified in CCTA using the proposed method. This might obviate the need for a dedicated non-contrast-enhanced CT scan for CAC scoring, which is regularly acquired prior to a CCTA scan, and thus reduce the CT radiation dose received by patients.
Chapter PDF
Similar content being viewed by others
Keywords
References
Rumberger, J.A., Brundage, B.H., Rader, D.J., Kondos, G.: Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin. Proc. 74(3), 243–252 (1999)
Hecht, H.S.: Coronary artery calcium scanning: Past, present, and future. JACC: Cardiovasc. Imag. 8(5), 579–596 (2015)
Voros, S., Qian, Z.: Agatston score tried and true: by contrast, can we quantify calcium on CTA? J. Cardiovasc. Comput. Tomogr. 6(1), 45–47 (2012)
Shahzad, R., van Walsum, T., Schaap, M., Rossi, A., Klein, S., Weustink, A.C., de Feyter, P.J., van Vliet, L.J., Niessen, W.J.: Vessel specific coronary artery calcium scoring: An automatic system. Acad. Radiol. 20(1), 1–9 (2013)
Wolterink, J.M., Leiner, T., Takx, R.A.P., Viergever, M.A., Išgum, I.: Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans. Med. Imag. 34(9), 1867–1878
Otton, J.M., Lønborg, J.T., Boshell, D., Feneley, M., Hayen, A., Sammel, N., Sesel, K., Bester, L., McCrohon, J.: A method for coronary artery calcium scoring using contrast-enhanced computed tomography. J. Cardiovasc. Comput. Tomogr. 6(1), 37–44 (2012)
Glodny, B., Helmel, B., Trieb, T., Schenk, C., Taferner, B., Unterholzner, V., Strasak, A., Petersen, J.: A method for calcium quantification by means of CT coronary angiography using 64-multidetector CT: very high correlation with Agatston and volume scores. Eur. Radiol. 19(7), 1661–1668 (2009)
Mylonas, I., Alam, M., Amily, N., Small, G., Chen, L., Yam, Y., Hibbert, B., Chow, B.J.: Quantifying coronary artery calcification from a contrast-enhanced cardiac computed tomography angiography study. Eur. Heart J. Cardiovasc. Imaging 15(2), 210–215 (2014)
Pavitt, C.W., Harron, K., Lindsay, A.C., Ray, R., Zielke, S., Gordon, D., Rubens, M.B., Padley, S.P., Nicol, E.D.: Deriving coronary artery calcium scores from CT coronary angiography: a proposed algorithm for evaluating stable chest pain. Int. J. Card. Imaging 30(6), 1135–1143 (2014)
Wesarg, S., Khan, M.F., Firle, E.A.: Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach. J. Digit. Imaging 19(3), 249–257 (2006)
Ahmed, W., de Graaf, M.A., Broersen, A., Kitslaar, P.H., Oost, E., Dijkstra, J., Bax, J.J., Reiber, J.H., Scholte, A.J.: Automatic detection and quantification of the Agatston coronary artery calcium score on contrast computed tomography angiography. Int. J. Cardiovasc. Imaging 31(1), 151–161 (2014)
Eilot, D., Goldenberg, R.: Fully automatic model-based calcium segmentation and scoring in coronary CT angiography. IJCARS 9(4), 595–608 (2014)
Teßmann, M., Vega-Higuera, F., Bischoff, B., Hausleiter, J., Greiner, G.: Automatic detection and quantification of coronary calcium on 3D CT angiography data. CSRDC 26(1), 117–124 (2011)
Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C., Mollet, N.R., Bauer, C., Bogunović, H., Castro, C., Deng, X., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Medical Image Analysis 13(5), 701–714 (2009)
Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013)
Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014)
Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imag. 29(1), 196–205 (2010)
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 315–323 (2011)
Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning 4 (2012)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1), 1929–1958 (2014)
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)
van der Bijl, N., Joemai, R.M., Geleijns, J., Bax, J.J., Schuijf, J.D., de Roos, A., Kroft, L.J.: Assessment of Agatston coronary artery calcium score using contrast-enhanced CT coronary angiography. Am. J. Roentgenol. 195(6), 1299–1305 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I. (2015). Automatic Coronary Calcium Scoring in Cardiac CT Angiography Using Convolutional Neural Networks. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9349. Springer, Cham. https://doi.org/10.1007/978-3-319-24553-9_72
Download citation
DOI: https://doi.org/10.1007/978-3-319-24553-9_72
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24552-2
Online ISBN: 978-3-319-24553-9
eBook Packages: Computer ScienceComputer Science (R0)