Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Challenge on Fine-Grained Sentiment Analysis Within ESWC2016

  • Conference paper
  • First Online:
Semantic Web Challenges (SemWebEval 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 641))

Included in the following conference series:

Abstract

The wide spread of the social media has given users a means to express and share their opinions and thoughts on a large range of topics and events. The number of opinions, emotions, sentiments that are being expressed within social media grows at an exponential rate; all these data can be exploited in order to come up with useful insights, analytics, etc. Initial Sentiment Analysis systems used lexical and statistical resources to automatically assess polarities of opinions and sentiment. With the raise of the Semantic Web, it has been proved that Sentiment Analysis techniques can have higher performances if they use semantic features. This generated further opportunities for the research domain as well as the market domain where key stakeholders need to catch up with the latest technology if they want to be compelling. Therefore, deep understanding of natural language text and the related semantics are urgent matter to be familiar with. Following the first two editions, the third edition of the Fine-Grained Sentiment Analysis challenge aims at providing a stimulus toward this direction. On the one hand, it represents an event where researchers can learn and share their methods and how they employed Semantics for Sentiment Analysis. On the other hand, it offers an occasion for stakeholders to get an idea of what research is being developed and where the research is headed to plan future strategies within the domain of Sentiment Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/diegoref/SSA2016.

  2. 2.

    http://alt.qcri.org/semeval2015/task12/.

  3. 3.

    http://dbpedia.org.

  4. 4.

    Publicly accessible at https://groups.google.com/forum/#!forum/semantic-sentiment-analysis.

  5. 5.

    http://www.maurodragoni.com/research/opinionmining/events/.

  6. 6.

    http://2016.eswc-conferences.org/.

  7. 7.

    https://en.wikipedia.org/wiki/SemEval.

  8. 8.

    http://alt.qcri.org/semeval2016/.

  9. 9.

    http://naacl.org/naacl-hlt-2016/index.html.

  10. 10.

    http://sentic.net/.

  11. 11.

    http://sentic.net/sentire/.

  12. 12.

    http://sentic.net/wisdom/.

  13. 13.

    http://sentimentsymposium.com.

  14. 14.

    http://challenge.semanticweb.org/.

  15. 15.

    http://iswc2016.semanticweb.org/.

  16. 16.

    http://www.alt.qcri.org/semeval2015/task12/.

  17. 17.

    http://alt.qcri.org/semeval2016/task5/.

References

  1. Subrahmanian, V.S., Reforgiato, D.: AVA: adjective-verb-adverb combinations for sentiment analysis. IEEE Intell. Syst. 23, 43–50 (2008)

    Article  Google Scholar 

  2. Benamara, F., Cesarano, C., Picariello, A., Reforgiato, D., Subrahmanian, V.S.: Sentiment analysis: adjectives and adverbs are better than adjectives alone. In: Proceedings of the International Conference on Weblogs and Social Media (ICWSM), Short paper (2007)

    Google Scholar 

  3. Gan tzandetal, J.: The expanding digital universe: a forecast of world wide information growth through, 2007 (2010)

    Google Scholar 

  4. Petrucci, G., Dragoni, M.: An information retrieval-based system for multi-domain sentiment analysis. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 234–243. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25518-7_20. Revised Selected Papers

    Chapter  Google Scholar 

  5. Recupero, D.R., Presutti, V., Consoli, S., Gangemi, A., Nuzzolese, A.: Sentilo: frame-based sentiment analysis. Cogn. Comput. 7(2), 211–225 (2014)

    Google Scholar 

  6. Consoli, S., Gangemi, A., Nuzzolese, A.G., Reforgiato Recupero, D., Spampinato, D.: Extraction of topics-events semantic relationships for opinion propagation in sentiment analysis. In: Proceedings of Extended Semantic Web Conference (ESWC), Crete, GR (2014)

    Google Scholar 

  7. Gangemi, A., Presutti, V., Reforgiato Recupero, D.: Frame-based detection of opinion holders, topics: a model and a tool. IEEE Comput. Intell. Mag. 9(1), 20–30 (2014)

    Article  Google Scholar 

  8. Dragoni, M., Tettamanzi, A.G.B., Pereira, C.: A fuzzy system for concept-level sentiment analysis. In: Presutti, V., et al. (eds.) Semantic Web Evaluation Challenge. CCIS, vol. 475, pp. 21–27. Springer, Heidelberg (2014)

    Google Scholar 

  9. Recupero, D.R., Cambria, E.: ESWC 2014 challenge: concept-level sentiment analysis. SemWebEval@ESWC 2014, pp. 3–20, May 2014. http://challenges.2014.eswc-conferences.org/index.php/SemSA

  10. Recupero, D.R., Dragoni, M., Presutti, V.: ESWC15 challenge on concept-level sentiment analysis. SemWebEval@ESWC (2011) Observation of Strains, pp. 211–222, May 2015

    Google Scholar 

  11. Presutti, V., et al. (eds.): Semantic Web Evaluation Challenge. CCIS, vol. 475. Springer, Heidelberg (2014)

    Google Scholar 

  12. Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A.: Semantic Web Evaluation Challenges. Second SemWebEval Challenge at ESWC, Portoroz, Slovenia, May 31-June 4, Revised Selected Papers. Springer (2015)

    Google Scholar 

  13. Gangemi, A., Alani, H., Nissim, M., Cambria, E., Recupero, D.R., Lanfranchi, V., Kauppinen, T.: Joint Proceedings of the 1th Workshop on Semantic Sentiment Analysis (SSA2014), and the Workshop on Social Media and Linked Data for Emergency Response (SMILE 2014), Co-located with 11th European Semantic Web Conference (ESWC 2014), 25 May 2014, Crete, Greece (2014). http://ceur-ws.org/Vol-1329/

  14. Cambria, E., Olsher, D., Rajagopal, D.: Senticnet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. In: Brodley, C.E., Stone, P. (eds.) Twenty-Eight AAAI Conference on Artificial Intelligence, pp. 1515–1521. AAAI Press, Palo Alto, July 2014

    Google Scholar 

  15. Dragoni, M.: SHELLFBK: an information retrieval-based system for multi-domain sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation, SemEval 2015, pp. 502–509. Association for Computational Linguistics, Denver, June 2015

    Google Scholar 

  16. Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C.: Propagating and aggregating fuzzy polarities for concept-level sentiment analysis. Cogn. Comput. 7(2), 186–197 (2015)

    Article  Google Scholar 

  17. Dragoni, M., Tettamanzi, A., Pereira, C.D.C.: DRANZIERA: an evaluation protocol for multi-domain opinion mining. In: Calzolari, N. (Conference Chair), Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France. European Language Resources Association (ELRA), May 2016

    Google Scholar 

  18. Liu, B.: Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers, San Rafael (2012)

    Google Scholar 

  19. Aprosio, A.P., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25518-7_22. Revised Selected Papers

    Chapter  Google Scholar 

  20. Rosa, E.D., Durante, A.: App2check extension for sentiment analysis of amazon products reviews. In: Sack et al. [26], pp. 95–107

    Google Scholar 

  21. Federici, M., Dragoni, M.: A knowledge-based approach for aspect-based opinion mining. In: Sack et al. [26], pp. 141–152

    Google Scholar 

  22. Sygkounas, E., Li, X., Rizzo, G., Troncy, R.: Sentiment polarity detection from amazon reviews: an experimental study. In: Sack et al. [26], pp. 108–120

    Google Scholar 

  23. Jebbara, S., Cimiano, P.: Aspect-based sentiment analysis using a two-step neural network architectures. In: Sack et al. [26], pp. 153–167

    Google Scholar 

  24. Rexha, A., Kröll, M., Dragoni, M., Kerns, R.: Exploiting propositions for opinion mining. In: Sack et al. [26], pp. 121–125

    Google Scholar 

  25. Petrucci, G., Dragoni, M.: The IRMUDOSA system at ESWC challenge on semantic sentiment analysis. In: Sack et al. [26], pp. 126–140

    Google Scholar 

  26. Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.): SemWebEval 2016. CCIS, vol. 641. Springer, Heidelberg (2016)

    Google Scholar 

Download references

Acknowledgement

Challenge Organizers want to thank Springer for supporting the provided awards also for this year edition. Moreover, the research leading to these results has received funding from the European Union Horizons 2020 the Framework Programme for Research and Innovation (2014–2020) under grant agreement 643808 Project MARIO Managing active and healthy aging with use of caring service robots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Reforgiato Recupero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dragoni, M., Reforgiato Recupero, D. (2016). Challenge on Fine-Grained Sentiment Analysis Within ESWC2016. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds) Semantic Web Challenges. SemWebEval 2016. Communications in Computer and Information Science, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-46565-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46565-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46564-7

  • Online ISBN: 978-3-319-46565-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics