Abstract
The Minimum Eccentricity Shortest Path (MESP) Problem consists in determining a shortest path (a path whose length is the distance between its extremities) of minimum eccentricity in a graph. It was introduced by Dragan and Leitert [9] who described a linear-time algorithm which is an 8-approximation of the problem. In this paper, we study deeper the double-BFS procedure used in that algorithm and extend it to obtain a linear-time 3-approximation algorithm. We moreover study the link between the MESP problem and the notion of laminarity, introduced by Völkel et al. [12], corresponding to its restriction to a diameter (i.e. a shortest path of maximum length), and show tight bounds between MESP and laminarity parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999). http://dx.doi.org/10.1137/S0097539796303421
Bacsó, G., Tuza, Z., Voigt, M.: Characterization of graphs dominated by induced paths. Discret. Math. 307(7–8), 822–826 (2007). http://dx.doi.org/10.1016/j.disc.2005.11.035
Corneil, D.G., Dragan, F.F., Köhler, E.: On the power of BFS to determine a graph’s diameter. Networks 42(4), 209–222 (2003). http://dx.doi.org/10.1002/net.10098
Corneil, D.G., Olariu, S., Stewart, L.: A linear time algorithm to compute a dominating path in an at-free graph. Inf. Process. Lett. 54(5), 253–257 (1995). http://dx.doi.org/10.1016/0020-0190(95)00021-4
Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discret. Math. 10(3), 399–430 (1997). http://dx.doi.org/10.1137/S0895480193250125
Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28(4), 1284–1297 (1999). http://dx.doi.org/10.1137/S0097539795282377
Deogun, J.S., Kratsch, D.: Diametral path graphs. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 344–357. Springer, Heidelberg (1995). doi:10.1007/3-540-60618-1_87
Deogun, J.S., Kratsch, D.: Dominating pair graphs. SIAM J. Discret. Math. 15(3), 353–366 (2002). http://dx.doi.org/10.1137/S0895480100367111
Dragan, F.F., Leitert, A.: On the minimum eccentricity shortest path problem. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 276–288. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21840-3_23
Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)
Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35(1), 39–61 (1983). http://dx.doi.org/10.1016/0095-8956(83)90079-5
Völkel, F., Bapteste, E., Habib, M., Lopez, P., Vigliotti, C.: Read networks and k-laminar graphs. CoRR abs/1603.01179 (2016). arXiv:1603.01179
Yamazaki, K., Bodlaender, H.L., Fluiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. In: Bongiovanni, G., Bovet, D.P., Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 276–287. Springer, Heidelberg (1997). doi:10.1007/3-540-62592-5_79
Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007). http://dx.doi.org/10.1109/TPAMI.2007.250598
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Birmelé, É., de Montgolfier, F., Planche, L. (2016). Minimum Eccentricity Shortest Path Problem: An Approximation Algorithm and Relation with the k-Laminarity Problem. In: Chan, TH., Li, M., Wang, L. (eds) Combinatorial Optimization and Applications. COCOA 2016. Lecture Notes in Computer Science(), vol 10043. Springer, Cham. https://doi.org/10.1007/978-3-319-48749-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-48749-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48748-9
Online ISBN: 978-3-319-48749-6
eBook Packages: Computer ScienceComputer Science (R0)