Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Minimum Eccentricity Shortest Path Problem: An Approximation Algorithm and Relation with the k-Laminarity Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10043))

Abstract

The Minimum Eccentricity Shortest Path (MESP) Problem consists in determining a shortest path (a path whose length is the distance between its extremities) of minimum eccentricity in a graph. It was introduced by Dragan and Leitert [9] who described a linear-time algorithm which is an 8-approximation of the problem. In this paper, we study deeper the double-BFS procedure used in that algorithm and extend it to obtain a linear-time 3-approximation algorithm. We moreover study the link between the MESP problem and the notion of laminarity, introduced by Völkel et al. [12], corresponding to its restriction to a diameter (i.e. a shortest path of maximum length), and show tight bounds between MESP and laminarity parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999). http://dx.doi.org/10.1137/S0097539796303421

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacsó, G., Tuza, Z., Voigt, M.: Characterization of graphs dominated by induced paths. Discret. Math. 307(7–8), 822–826 (2007). http://dx.doi.org/10.1016/j.disc.2005.11.035

    Article  MathSciNet  MATH  Google Scholar 

  3. Corneil, D.G., Dragan, F.F., Köhler, E.: On the power of BFS to determine a graph’s diameter. Networks 42(4), 209–222 (2003). http://dx.doi.org/10.1002/net.10098

    Article  MathSciNet  MATH  Google Scholar 

  4. Corneil, D.G., Olariu, S., Stewart, L.: A linear time algorithm to compute a dominating path in an at-free graph. Inf. Process. Lett. 54(5), 253–257 (1995). http://dx.doi.org/10.1016/0020-0190(95)00021-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discret. Math. 10(3), 399–430 (1997). http://dx.doi.org/10.1137/S0895480193250125

    Article  MathSciNet  MATH  Google Scholar 

  6. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28(4), 1284–1297 (1999). http://dx.doi.org/10.1137/S0097539795282377

    Article  MathSciNet  MATH  Google Scholar 

  7. Deogun, J.S., Kratsch, D.: Diametral path graphs. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 344–357. Springer, Heidelberg (1995). doi:10.1007/3-540-60618-1_87

    Chapter  Google Scholar 

  8. Deogun, J.S., Kratsch, D.: Dominating pair graphs. SIAM J. Discret. Math. 15(3), 353–366 (2002). http://dx.doi.org/10.1137/S0895480100367111

    Article  MathSciNet  MATH  Google Scholar 

  9. Dragan, F.F., Leitert, A.: On the minimum eccentricity shortest path problem. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 276–288. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21840-3_23

    Chapter  Google Scholar 

  10. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35(1), 39–61 (1983). http://dx.doi.org/10.1016/0095-8956(83)90079-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Völkel, F., Bapteste, E., Habib, M., Lopez, P., Vigliotti, C.: Read networks and k-laminar graphs. CoRR abs/1603.01179 (2016). arXiv:1603.01179

  13. Yamazaki, K., Bodlaender, H.L., Fluiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. In: Bongiovanni, G., Bovet, D.P., Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 276–287. Springer, Heidelberg (1997). doi:10.1007/3-540-62592-5_79

    Chapter  Google Scholar 

  14. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007). http://dx.doi.org/10.1109/TPAMI.2007.250598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien de Montgolfier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Birmelé, É., de Montgolfier, F., Planche, L. (2016). Minimum Eccentricity Shortest Path Problem: An Approximation Algorithm and Relation with the k-Laminarity Problem. In: Chan, TH., Li, M., Wang, L. (eds) Combinatorial Optimization and Applications. COCOA 2016. Lecture Notes in Computer Science(), vol 10043. Springer, Cham. https://doi.org/10.1007/978-3-319-48749-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48749-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48748-9

  • Online ISBN: 978-3-319-48749-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics