Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Introduction to Data-Driven Methodologies for Prognostics and Health Management

  • Chapter
  • First Online:
Probabilistic Prognostics and Health Management of Energy Systems

Abstract

This book chapter gives an overview of prognostics and health management (PHM) methodologies followed by a case study in the development of PHM solutions for wind turbines. Research topics in PHM are identified and commonly used methods are briefly introduced. The case study in wind turbine prognostics has shown in detail how to develop a PHM system for an industrial asset. With the advancement of sensing technologies and computational capability, more and more industrial applications are emerging. Current gaps and future directions in PHM are discussed at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Alter, P. Banerjee, P. E. Daugherty, W. Negm, Driving Unconventional Growth through the Industrial Internet of Things, 2014

    Google Scholar 

  2. D.O. Gray, D. Rivers, Measuring the Economic Impacts of the NSF Industry/University Cooperative Research Centers Program: A Feasibility Study, 2012

    Google Scholar 

  3. J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, D. Siegel, Prognostics and health management design for rotary machinery systems—reviews, methodology and applications. Mech. Syst. Signal Process. 42(1), 314–334 (2014)

    Article  Google Scholar 

  4. M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms (Wiley, 2011)

    Google Scholar 

  5. I.H. Witten, E. Frank, Data Mining: Practical Machine learning tools and Techniques (Morgan Kaufmann, 2005)

    Google Scholar 

  6. K.P. Murphy, Machine Learning: a Probabilistic Perspective (MIT press, 2012)

    Google Scholar 

  7. M. Pecht, R. Jaai, A prognostics and health management roadmap for information and electronics-rich systems. Microelectron. Reliab. 50(3), 317–323 (2010)

    Article  Google Scholar 

  8. Z. Ge, Z. Song, Multivariate Statistical Process Control: Process Monitoring Methods and Applications (Springer Science & Business Media, 2012)

    Google Scholar 

  9. C. Jin, A.P. Ompusunggu, Z. Liu, H.D. Ardakani, F. Petre, J. Lee, Envelope analysis on vibration signals for stator winding fault early detection in 3-phase induction motors. Int. J. Progn. Health Manag. 6, 12 (2015)

    Google Scholar 

  10. A.K.S. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Article  Google Scholar 

  11. R.B. Randall, Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications (John Wiley & Sons, 2011)

    Google Scholar 

  12. J.W. Hines, R. Seibert, Technical review of on-line monitoring techniques for performance assessment. State-of-the-Art 1 (2006)

    Google Scholar 

  13. G.A. Cherry, Methods for Improving the Reliability of Semiconductor Fault Detection and Diagnosis with Principal Component Analysis, 2006

    Google Scholar 

  14. E. Bechhoefer, D. He, P. Dempsey, Gear health threshold setting based on a probability of false alarm, in Proceedings of Annual Conference of the Prognostics and Health Management Society, 2011

    Google Scholar 

  15. H. Oh, M.H. Azarian, M. Pecht, Estimation of fan bearing degradation using acoustic emission analysis and Mahalanobis distance, in Proceedings of the Applied Systems Health Management Conference, pp. 1–12, 2011

    Google Scholar 

  16. R. Ganesan, A. N. V. Rao, and T. K. Das, A Multiscale Bayesian SPRT Approach for Online Process Monitoring, in IEEE Transactions of Semiconductor Manufacturing, vol. 21.3, pp. 399–412, 2008

    Google Scholar 

  17. D. Tax, A. Ypma, R. Duin, Support vector data description applied to machine vibration analysis, in Proceedings of 5th Annual Conference of the Advanced School for Computing and Imaging (Heijen, NL), pp. 398–405, 1999

    Google Scholar 

  18. D. He, E. Bechhoefer, Development and validation of bearing diagnostic and prognostic tools using HUMS condition indicators, in Proceedings of 2008 IEEE Aerospace Conference, pp. 1–8, 2008

    Google Scholar 

  19. D.J. Cleary, P.E. Cuddihy, A novel approach to aircraft engine anomaly detection and diagnostics, in Proceedings of 2004 IEEE Aerospace Conference, vol. 5, pp. 3468–3475, (2004)

    Google Scholar 

  20. W. Yan, F. Xue, Jet engine gas path fault diagnosis using dynamic fusion of multiple classifiers, in Proceedings of 2008 IEEE International Joint Conference on Neural Networks, pp. 1585–1591, 2008

    Google Scholar 

  21. L. Yang, J. Lee, Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems. Robot. Comput.-Integr. Manuf. 28(1), 66–74 (2012)

    Article  Google Scholar 

  22. N. Gebraeel, M. Lawley, R. Liu, V. Parmeshwaran, Residual life predictions from vibration-based degradation signals: a neural network approach. Ind. Electron. IEEE Trans. 51(3), 694–700 (2004)

    Article  Google Scholar 

  23. T. Wang, J. Yu, D. Siegel, J. Lee, A similarity-based prognostics approach for remaining useful life estimation of engineered systems, in Proceedings of International Conference on Prognostics and Health Management, pp. 1–6, 2008

    Google Scholar 

  24. M.E. Orchard, A Particle Filtering-Based Framework for On-Line Fault Diagnosis and Failure Prognosis (Georgia Institute of Technology)

    Google Scholar 

  25. S. Sawyer, K. Rave, Global Wind Report–Annual Market Update 2012, (GWEC, Glob. Wind Energy Council, 2013)

    Google Scholar 

  26. U.S. Department of Energy, Wind Power Today 2010, 2010

    Google Scholar 

  27. S. Sheng, P.S. Veers, Wind Turbine Drivetrain Condition Monitoring-An Overview (National Renewable Energy Laboratory, 2011)

    Google Scholar 

  28. P. Gardner, A. Garrad, L.F. Hansen, A. Tindal, J.I. Cruz, L. Arribas, N. Fichaux, Wind Energy-The Facts Part 1 Technology (EWEA, Garrad Hassan Partners, UK CIEMAT, Spain, 2009)

    Google Scholar 

  29. S. Faulstich, B. Hahn, P.J. Tavner, Wind turbine downtime and its importance for offshore deployment. Wind Energy 14(3), 327–337 (2011)

    Article  Google Scholar 

  30. E.R. Lapira, Fault Detection in a Network of Similar Machines Using Clustering Approach, (University of Cincinnati, 2012)

    Google Scholar 

  31. D. Siegel, W. Zhao, E. Lapira, M. AbuAli, J. Lee, A comparative study on vibration-based condition monitoring algorithms for wind turbine drive trains. Wind Energy 17(5), 695–714 (2014)

    Article  Google Scholar 

  32. A. Jabłoński, T. Barszcz, M. Bielecka, Automatic validation of vibration signals in wind farm distributed monitoring systems. Measurement 44(10), 1954–1967 (2011)

    Article  Google Scholar 

  33. General Electric, Predix. https://www.ge.com/digital/predix

  34. National Instruments, Big Analog DataTM Solutions. http://www.ni.com/white-paper/14667/en/

  35. Center for Intelligent Maintenance Systems, Development of Smart Prognostics Agents (WATCHDOG AGENT®). http://www.imscenter.net/front-page/Resources/WD.pdf

  36. National Instruments, Watchdog AgentTM Prognostics Toolkit for LabVIEW—IMS Center. http://sine.ni.com/nips/cds/view/p/lang/en/nid/210191

  37. Applied Materials, Applied TechEdgeTM PrizmTM. http://www.appliedmaterials.com/media/documents/techedge-prizm-overview

  38. CANRIG, RigWatch® Instrumentation and Equipment Condition Monitoring. http://www.canrigdrillingtechnology.com/rigwatch.php

  39. Y. Chen, J. Lee, Data Quality Assessment Methodology for Improved Prognostics Modeling (University of CIncinnati, Cincinnati, OH, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, J., Jin, C., Liu, Z., Davari Ardakani, H. (2017). Introduction to Data-Driven Methodologies for Prognostics and Health Management. In: Ekwaro-Osire, S., Gonçalves, A., Alemayehu, F. (eds) Probabilistic Prognostics and Health Management of Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-55852-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55852-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55851-6

  • Online ISBN: 978-3-319-55852-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics