Abstract
Physical universality of a cellular automaton was defined by Janzing in 2010 as the ability to implement an arbitrary transformation of spatial patterns. In 2014, Schaeffer gave a construction of a two-dimensional physically universal cellular automaton. We construct a one-dimensional version of the automaton and a reversibly universal automaton.
Research supported by the Academy of Finland Grant 131558.
V. Salo was partially supported by CONICYT Proyecto Anillo ACT 1103.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aaronson, S.: Shtetl-Optimized - the blog of Scott Aaronson. http://www.scottaaronson.com/blog/?p=1896. Accessed 17 Sept 2014
Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)
Delvenne, J.-C., Kurka, P., Blondel, V.D.: Decidability and universality in symbolic dynamical systems. Fundam. Inform. 74(4), 463–490 (2006)
Janzing, D.: Is there a physically universal cellular automaton or Hamiltonian? ArXiv e-prints, September 2010
Kari, J.: Universal pattern generation by cellular automata. Theor. Comput. Sci. 429, 180–184 (2012). Magic in Science
Neary, T., Woods, D.: P-completeness of cellular automaton Rule 110. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006). doi:10.1007/11786986_13
Ollinger, N.: The intrinsic universality problem of one-dimensional cellular automata. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 632–641. Springer, Heidelberg (2003). doi:10.1007/3-540-36494-3_55
Schaeffer, L.: A physically universal cellular automaton. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 21, p. 84 (2014)
Schaeffer, L.: A physically universal cellular automaton. In: ITCS 2015–Proceedings of the 6th Innovations in Theoretical Computer Science, pp. 237–246 (2015)
Schaeffer, L.: A physically universal quantum cellular automaton. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 46–58. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47221-7_4
Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2_104
von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)
Acknowledgments
We are thankful to Charalampos Zinoviadis for introducing this problem to us, and for many fruitful discussions on the proof, and Luke Schaeffer for his Golly implementation of our physically universal CA. We would also like to thank Scott Aaronson for popularizing the concept in his blog [1].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Salo, V., Törmä, I. (2017). A One-Dimensional Physically Universal Cellular Automaton. In: Kari, J., Manea, F., Petre, I. (eds) Unveiling Dynamics and Complexity. CiE 2017. Lecture Notes in Computer Science(), vol 10307. Springer, Cham. https://doi.org/10.1007/978-3-319-58741-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-58741-7_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58740-0
Online ISBN: 978-3-319-58741-7
eBook Packages: Computer ScienceComputer Science (R0)