Abstract
Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F, G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable:
-
(i)
pairs where F has strictly larger topological entropy than G, and
-
(ii)
pairs that are strongly conjugate and have zero topological entropy.
Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata F and G over a full shift: Are F and G conjugate? Is F a factor of G? Is F a subsystem of G? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.
Research supported by the Academy of Finland Grant 296018.
J. Jalonen—Research supported by the Finnish Cultural Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amoroso, S., Patt, Y.: Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J. Comput. Syst. Sci. 6, 448–464 (1972)
Boyle, M., Kitchens, B.: Periodic points for onto cellular automata. Indag. Math. 10(4), 483–493 (1999)
Culik II, K., Pachl, J., Yu, S.: On the limit sets of cellular automata. SIAM J. Comput. 18(4), 831–842 (1989)
Dartnell, P., Maass, A., Schwartz, F.: Combinatorial constructions associated to the dynamics of one-sided cellular automata. Theoret. Comput. Sci. 304, 485–497 (2003)
Di Lena, P.: Decidable and computational properties of cellular automata. Department of Computer Science, University of Bologna, Ph.D. thesis (2007)
Epperlein, J.: Classification of elementary cellular automata up to topological conjugacy. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 99–112. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47221-7_8
Epperlein, J.: Topological conjugacies between cellular automata. Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, Ph.D. thesis (2017)
Hurd, L.P., Kari, J., Culik, K.: The topological entropy of cellular automata is uncomputable. Ergod. Theory Dyn. Syst. 12, 255–265 (1992)
Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21, 571–586 (1992)
Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48, 149–182 (1994)
Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334, 3–33 (2005)
Kari, J., Lukkarila, V.: Some undecidable dynamical properties for one-dimensional reversible cellular automata. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses. NCS, pp. 639–660. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88869-7_32
Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_34
Kůrka, P.: Topological and Symbolic Dynamics, vol. 11. Société Mathématique de France (2003)
Kůrka, P.: Topological dynamics of cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Sciences, pp. 9246–9268. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-30440-3_556. Print ISBN 978-0-387-75888-6
Aanderaa, S., Lewis, H.: Linear sampling and the \(\forall \exists \forall \) case of the decision problem. J. Symb. Logic 39(3), 519–548 (1974)
Nasu, M.: Textile systems for Endomorphisms and Automorphisms of the Shift, vol. 546. Memoirs of the American Mathematical Society (1995)
Williams, R.F.: Classification of subshifts of finite type. Ann. Math. 98, 120–153 (1973)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Jalonen, J., Kari, J. (2018). Conjugacy of One-Dimensional One-Sided Cellular Automata is Undecidable. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-73117-9_16
Published:
Publisher Name: Edizioni della Normale, Cham
Print ISBN: 978-3-319-73116-2
Online ISBN: 978-3-319-73117-9
eBook Packages: Computer ScienceComputer Science (R0)