Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Model Learning as a Satisfiability Modulo Theories Problem

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10792))

Abstract

We explore an approach to model learning that is based on using satisfiability modulo theories (SMT) solvers. To that end, we explain how DFAs, Mealy machines and register automata, and observations of their behavior can be encoded as logic formulas. An SMT solver is then tasked with finding an assignment for such a formula, from which we can extract an automaton of minimal size. We provide an implementation of this approach which we use to conduct experiments on a series of benchmarks. These experiments address both the scalability of the approach and its performance relative to existing active learning tools.

This work is supported by the Netherlands Organization for Scientific Research (NWO) projects 628.001.009 on Learning Extended State Machine for Malware Analysis (LEMMA), and 612.001.216 on Active Learning of Security Protocols (ALSeP). This paper greatly extends earlier work [24].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.science.ru.nl/rick/z3gi/blob/lata/resources/paper.pdf.

  2. 2.

    See https://gitlab.science.ru.nl/rick/z3gi/tree/lata.

References

  1. Aarts, F., et al.: Generating models of infinite-state communication protocols using regular inference with abstraction. FMSD 46(1), 1–41 (2015)

    MATH  Google Scholar 

  2. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_11. http://www.sws.cs.ru.nl/publications/papers/fvaan/TomteFresh/

    Chapter  Google Scholar 

  3. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: ICST Workshops, pp. 461–468. IEEE (2013)

    Google Scholar 

  4. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0_54

    Chapter  Google Scholar 

  5. Angluin, D.: Learning regular sets from queries and counterexamples. I&C 75(2), 87–106 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Angluin, D.: Negative results for equivalence queries. Mach. Learn. 5, 121–150 (1990)

    Google Scholar 

  7. Bruynooghe, M., et al.: Predicate logic as a modeling language: modeling and solving some machine learning and data mining problems with IDP3. TPLP 15(6), 783–817 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite state machines. FAOC 28(2), 233–263 (2016)

    MathSciNet  MATH  Google Scholar 

  9. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. CACM 54(9), 69–77 (2011)

    Article  Google Scholar 

  10. Florêncio, C.C., Verwer, S.: Regular inference as vertex coloring. TCS 558, 18–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gold, E.: Language identification in the limit. I&C 10(5), 447–474 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Heule, M., Verwer, S.: Software model synthesis using satisfiability solvers. Empir. Softw. Eng. 18(4), 825–856 (2013)

    Article  Google Scholar 

  13. De la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  14. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_17

    Chapter  Google Scholar 

  15. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Google Scholar 

  16. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification. IEEE Trans. Comput. 43(3), 306–320 (1994)

    Article  MathSciNet  Google Scholar 

  17. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines—a survey. Proc. IEEE 84(8), 1090–1123 (1996)

    Article  Google Scholar 

  18. Neider, D.: Computing minimal separating DFAs and regular invariants using SAT and SMT solvers. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 354–369. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_28

    Chapter  Google Scholar 

  19. Peled, D., Vardi, M., Yannakakis, M.: Black box checking. In: FORTE, pp. 225–240. Kluwer (1999)

    Google Scholar 

  20. Petrenko, A., Avellaneda, F., Groz, R., Oriat, C.: From passive to active FSM inference via checking sequence construction. In: Yevtushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 126–141. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67549-7_8

    Chapter  Google Scholar 

  21. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. STTT 11(5), 393–407 (2009)

    Article  Google Scholar 

  22. Schuts, M., Hooman, J., Vaandrager, F.: Refactoring of legacy software using model learning and equivalence checking: an industrial experience report. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 311–325. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_20

    Chapter  Google Scholar 

  23. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata learning to embedded control software. In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_5

    Chapter  Google Scholar 

  24. Smetsers, R.: Grammatical Inference as a Satisfiability Modulo Theories Problem. arXiv preprint arXiv:1705.10639 (2017)

  25. Vaandrager, F.: Model learning. CACM 60(2), 86–95 (2017)

    Article  Google Scholar 

  26. Walkinshaw, N., Derrick, J., Guo, Q.: Iterative refinement of reverse-engineered models by model-based testing. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fiterău-Broştean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smetsers, R., Fiterău-Broştean, P., Vaandrager, F. (2018). Model Learning as a Satisfiability Modulo Theories Problem. In: Klein, S., Martín-Vide, C., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2018. Lecture Notes in Computer Science(), vol 10792. Springer, Cham. https://doi.org/10.1007/978-3-319-77313-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77313-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77312-4

  • Online ISBN: 978-3-319-77313-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics