Abstract
Self-adaptation and self-organisation (SASO) are increasingly used in information and communication technology to master complexity and keep the administrative effort at an acceptable level. However, using SASO mechanisms is not an end in itself – the primary goal is typically to allow for a higher autonomy of systems in order to react appropriately to disturbances and dynamics in the environmental conditions. We refer to this goal as achieving “robustness”. During design-time, engineers have different possibilities to develop SASO mechanisms for an underlying control problem. When deciding which path to follow, an analysis of the inherent robustness of possible solutions is necessary. In this article, we present a novel quantification method for robustness that provides the basis to compare different control strategies in similar conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An attack is a certain instance of the broader class of disturbances. In the remainder of this article, we will use the term “attack” but the discussion is valid in general for all kinds of disturbances.
References
2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems, Cambridge, MA, USA, 21–25 September 2015. IEEE Computer Society (2015)
2015 IEEE International Conference on Autonomic Computing, Grenoble, France, 7–10 July 2015. IEEE Computer Society (2015)
Barceló, J., Codina, E., Casas, J., Ferrer, J., García, D.: Microscopic traffic simulation: a tool for the design, analysis and evaluation of intelligent transport systems. J. Intell. Robot. Syst. 41(2–3), 173–203 (2005)
Bazzan, A.L.C., Klügl, F. (eds.): Multi-Agent Systems for Traffic and Transportation Engineering. Idea Group Publishing, Hershey (2009)
Bellman, K.L., Tomforde, S., Würtz, R.P.: Interwoven systems: self-improving systems integration. In: Eighth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2014, London, United Kingdom, 8–12 September 2014, pp. 123–127 (2014)
Callaway, D.S., Newman, M.E., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468 (2000)
Cámara, J., Correia, P., de Lemos, R., Vieira, M.: Empirical resilience evaluation of an architecture-based self-adaptive software system. In: Proceedings of 10th International ACM Sigsoft Conference on Quality of Software Architectures, pp. 63–72 (2014)
Chan, W.: Interaction metric of emergent behaviours in agent-based simulations. In: Proceedings of the Winter Simulation Conference, pp. 357–368 (2011)
Di Marzo Serugendo, G.: Robustness and dependability of self-organizing systems - a safety engineering perspective. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 254–268. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05118-0_18
Dinopoulou, V., Diakaki, C., Papageorgiou, M.: Applications of the urban traffic control strategy TUC. Eur. J. Oper. Res. 175(3), 1652–1665 (2006)
Eberhardinger, B., Anders, G., Seebach, H., Siefert, F., Reif, W.: A research overview and evaluation of performance metrics for self-organization algorithms. In: 2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASO Workshops 2015, 21–25 September 2015Cambridge, MA, USA, pp. 122–127 (2015)
Edenhofer, S., Stifter, C., Jänen, U., Kantert, J., Tomforde, S., Hähner, J., Müller-Schloer, C.: An accusation-based strategy to handle undesirable behaviour in multi-agent systems. In: 2015 IEEE International Conference on Autonomic Computing, Grenoble, France, 7–10 July 2015, pp. 243–248 (2015)
Edenhofer, S., Tomforde, S., Kantert, J., Klejnowski, L., Bernard, Y., Hähner, J., Müller-Schloer, C.: Trust communities: an open, self-organised social infrastructure of autonomous agents. In: Reif, W., et al. (eds.) Trustworthy Open Self-Organising Systems. AS, pp. 127–152. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29201-4_5
Gronau, N.: Determinants of an appropriate degree of autonomy in a cyber-physical production system. In: Proceedings of 6th International Conference on Changeable, Agile, Reconfigurable, and Virtual Production, vol. 52, pp. 1–5 (2016)
Holzer, R., de Meer, H.: Quantitative modeling of self-organizing properties. In: Spyropoulos, T., Hummel, K.A. (eds.) IWSOS 2009. LNCS, vol. 5918, pp. 149–161. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10865-5_13
Holzer, R., de Meer, H.: Methods for approximations of quantitative measures in self-organizing systems. In: Bettstetter, C., Gershenson, C. (eds.) IWSOS 2011. LNCS, vol. 6557, pp. 1–15. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19167-1_1
Jalote, P.: Fault Tolerance in Distributed Systems. Prentice-Hall, Inc. (1994)
Kaddoum, E., Raibulet, C., Georgé, J.P., Picard, G., Gleizes, M.P.: Criteria for the evaluation of self-* systems. In: Proceedings of ICSE Workshop on Software Engineering for Adaptive and Self-Managing System, pp. 29–38 (2010)
Kantert, J., Edenhofer, S., Tomforde, S., Hähner, J., Müller-Schloer, C.: Normative control: controlling open distributed systems with autonomous entities. Trustworthy Open Self-Organising Systems. AS, pp. 89–126. Springer, Cham (2016a). https://doi.org/10.1007/978-3-319-29201-4_4
Kantert, J., Reinhard, F., von Zengen, G., Tomforde, S., Wolf, L., Müller-Schloer, C.: Combining trust and ETX to provide robust wireless sensor networks. In: Varbanescu, A.L. (ed.) Proceedings of the 29th International Conference on Architecture of Computing Systems Workshops (ARCSW 2016), pp. 1–7. VDE Verlag GmbH, Berlin, Offenbach, DE, Nuremberg, Germany (2016b). chap. 16
Kantert, J., Scharf, H., Edenhofer, S., Tomforde, S., Hähner, J., Müller-Schloer, C.: A graph analysis approach to detect attacks in multi-agent-systems at runtime. In: Proceedings of the Eighth IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2014), pp. 80–89. IEEE, London, September 2014
Kantert, J., Tomforde, S., Müller-Schloer, C., Edenhofer, S., Sick, B.: Quantitative robustness - a generalised approach to compare the impact of disturbances in self-organising systems. In: Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), vol. 1, pp. 39–50. SciTePress, Porto (2017). (Best Student Paper Award)
Kantert, J., et al.: Improving reliability and endurance using end-to-end trust in distributed low-power sensor networks. In: Pinho, L.M.P., Karl, W., Cohen, A., Brinkschulte, U. (eds.) ARCS 2015. LNCS, vol. 9017, pp. 135–145. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16086-3_11
Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50 (2003)
Klejnowski, L.: Trusted community: a novel multiagent organisation for open distributed systems. Ph.D. thesis, Leibniz Universität Hannover (2014). http://edok01.tib.uni-hannover.de/edoks/e01dh11/668667427.pdf
Menascé, D.A., Bennani, M.N., Ruan, H.: On the use of online analytic performance models, in self-managing and self-organizing computer systems. In: Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 128–142. Springer, Heidelberg (2005). https://doi.org/10.1007/11428589_9
Nafz, F., Seebach, H., Steghöfer, J.P., Anders, G., Reif, W.: Constraining Self-organisation Through Corridors of Correct Behaviour: The Restore Invariant Approach. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing - A Paradigm Shift for Complex Systems. Autonomic Systems, pp. 79–93. Birkhäuse verlag, Basel (2011)
Nimis, J., Lockemann, P.C.: Robust multi-agent systems: the transactional conversation approach. In: First International Workshop on Safety and Security in Multiagent Systems (SASEMAS 2004), pp. 73–84 (2004)
Prothmann, H., Tomforde, S., Lyda, J., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.: Self-organised routing for road networks. In: Kuipers, F.A., Heegaard, P.E. (eds.) IWSOS 2012. LNCS, vol. 7166, pp. 48–59. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28583-7_5
Prothmann, H., Tomforde, S., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.: Organic traffic control. In: Organic Computing - A Paradigm Shift for Complex Systems, pp. 431–446. Birkhäuser Verlag (2011)
Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U.: Adaptivity and self-organisation in organic computing systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 5(3), 1–32 (2010)
Scholl, A., et al.: Robuste planung und optimierung: Grundlagen, konzepte und methoden; experimentelle untersuchungen. Tech. rep., Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL) (2000)
Schwind, N., Okimoto, T., Inoue, K., Chan, H., Ribeiro, T., Minami, K., Maruyama, H.: Systems resilience: a challenge problem for dynamic constraint-based agent systems. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 785–788. International Foundation for Autonomous Agents and Multiagent Systems (2013)
Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. Prentice-Hall, Englewood Cliffs (1991)
Taguchi, G.: Robust technology development. Mech. Eng. CIME 115(3), 60–63 (1993)
Tanenbaum, A.S.: Computer Networks, 4th edn. Pearson Education (2002)
Tomforde, S., Hähner, J., Seebach, H., Reif, W., Sick, B., Wacker, A., Scholtes, I.: Engineering and mastering interwoven systems. In: ARCS 2014–27th International Conference on Architecture of Computing Systems, Workshop Proceedings, 25–28 February 2014, Luebeck, Germany, pp. 1–8. University of Luebeck, Institute of Computer Engineering (2014)
Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Müller-Schloer, C., Richter, U., Schmeck, H.: Observation and control of organic systems. In: Organic Computing - A Paradigm Shift for Complex Systems, pp. 325–338. Birkhäuser Verlag (2011)
Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.: Possibilities and limitations of decentralised traffic control systems. In: 2010 IEEE World Congress on Computational Intelligence (IEEE WCCI 2010), pp. 3298–3306. IEEE (2010)
Tomforde, S., Sick, B., Müller-Schloer, C.: Organic Computing in the Spotlight, January 2017. http://arxiv.org/abs/1701.08125
Transportation Research Board: Highway capacity manual. Technical report, National Research Council, Washington D.C., US (2000)
Parunak, H.V.D., Brueckner, S.: Entropy and self-organization in multi-agent systems. In: Proceedings of the Fifth International Conference on Autonomous Agents (AGENTS 2001), pp. 124–130. ACM, New York (2001)
Wedde, H.F., Lehnhoff, S., et al.: Highly dynamic and adaptive traffic congestion avoidance in real-time inspired by honey bee behavior. In: Holleczek, P., Vogel-Heuser, B. (eds.) Mobilität und Echtzeit - Fachtagung der GI-Fachgruppe Echtzeitsysteme, pp. 21–31. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74837-3_3
Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J., Alexander, R.: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550 (Proposed Standard), March 2012. http://www.ietf.org/rfc/rfc6550.txt
Wooldridge, M.: An Introduction to Multiagent systems. Wiley (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Tomforde, S., Kantert, J., Müller-Schloer, C., Bödelt, S., Sick, B. (2018). Comparing the Effects of Disturbances in Self-adaptive Systems - A Generalised Approach for the Quantification of Robustness. In: Nguyen, N., Kowalczyk, R., van den Herik, J., Rocha, A., Filipe, J. (eds) Transactions on Computational Collective Intelligence XXVIII. Lecture Notes in Computer Science(), vol 10780. Springer, Cham. https://doi.org/10.1007/978-3-319-78301-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-78301-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78300-0
Online ISBN: 978-3-319-78301-7
eBook Packages: Computer ScienceComputer Science (R0)