Abstract
DNA typing or profiling is a widely used practice in various forensic laboratories, used, for example, in sexual assault cases when the source of DNA mixture can combine different individuals such as the victim, the criminal, and the victim’s partner. DNA typing is considered one of the hardest problem in the forensic science domain, and it is an active area of research. The computational complexity of DNA typing increases significantly with the number of unknowns in the mixture. Different methods have been developed and implemented to address this problem. However, its computational complexity has been the major deterring factor holding its advancements and applications. In this paper, we review DNA profiling methods and tools with a particular focus on their computational performance and accuracy. Faster interpretations of DNA mixtures with a large number of unknowns and higher accuracies are expected to open up new frontiers for this area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
The American Heritage Medical Dictionary. Houghton Mifflin Co., Boston (2007)
Butler, J.M.: Fundamentals of Forensic DNA Typing. Academic Press/Elsevier (2010)
Swaminathan, H., Grgicak, C.M., Medard, M., Lun, D.S.: NOCIt: a computational method to infer the number of contributors to DNA samples analyzed by STR genotyping. Forensic Sci. Int. Genet. 16, 172–180 (2015)
Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.: Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci. 109, 1128–1133 (2017)
Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart ubiquitous environments: a survey. IEEE Access. 5, 9533–9554 (2017)
Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn: a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 5, 2615–2635 (2017)
Butler, J.M.: The future of forensic DNA analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 577–579 (2015)
Paoletti, D.R., Krane, D.E., Raymer, M.L., Doom, T.E.: Inferring the number of contributors to mixed DNA profiles. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9, 113–122 (2012)
Perez, J., Mitchell, A.A., Ducasse, N., Tamariz, J., Caragine, T.: Estimating the number of contributors to two-, three-, and four-person mixtures containing DNA in high template and low template amounts. Croat. Med. J. 52, 314–326 (2011)
Gill, P., Haned, H.: A new methodological framework to interpret complex DNA profiles using likelihood ratios. Forensic Sci. Int. Genet. 7, 251–263 (2013)
Weedn, V.W., Foran, D.R.: Forensic DNA typing. In: Leonard, D.G.B. (ed.) Molecular Pathology in Clinical Practice, pp. 793–810. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-19674-9_54
Monich, U.J., Grgicak, C., Cadambe, V., Wu, J.Y., Wellner, G., Duffy, K., Medard, M.: A signal model for forensic DNA mixtures. In: 2014 48th Asilomar Conference on Signals, Systems and Computers, pp. 429–433. IEEE (2014)
Inman, K., Rudin, N., Cheng, K., Robinson, C., Kirschner, A., Inman-Semerau, L., Lohmueller, K.E.: Lab retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles. BMC Bioinf. 16, 298 (2015)
Butler, J.M.: Advanced Topics in Forensic DNA Typing: Interpretation. Academic Press (2014)
Bille, T., Bright, J.-A., Buckleton, J.: Application of random match probability calculations to mixed STR profiles. J. Forensic Sci. 58, 474–485 (2013)
Garofano, P., Caneparo, D., D’Amico, G., Vincenti, M., Alladio, E.: An alternative application of the consensus method to DNA typing interpretation for Low Template-DNA mixtures. Forensic Sci. Int. Genet. Suppl. Ser. 5, e422–e424 (2015)
Kelly, H., Bright, J.-A., Buckleton, J.S., Curran, J.M.: A comparison of statistical models for the analysis of complex forensic DNA profiles. Sci. Justice 54, 66–70 (2014)
Bleka, Ø., Storvik, G., Gill, P.: EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci. Int. Genet. 21, 35–44 (2016)
Perlin, M.W., Dormer, K., Hornyak, J., Schiermeier-Wood, L., Greenspoon, S.: TrueAllele casework on Virginia DNA mixture evidence: computer and manual interpretation in 72 reported criminal cases. PLoS ONE 9, e92837 (2014)
Gill, P., Haned, H., Eduardoff, M., Santos, C., Phillips, C., Parson, W.: The open-source software LRmix can be used to analyse SNP mixtures. Forensic Sci. Int. Genet. Suppl., Ser (2015)
Swaminathan, H., Garg, A., Grgicak, C.M., Medard, M., Lun, D.S.: CEESIt: A computational tool for the interpretation of STR mixtures. Forensic Sci. Int. Genet. 22, 149–160 (2016)
Balding, D.J., Steele, C.: The likeLTD software: an illustrative analysis, explanation of the model, results of performance tests and version history. UCL Genet. Inst. 1, 1–49 (2014)
Moretti, T.R., Just, R.S., Kehl, S.C., Willis, L.E., Buckleton, J.S., Bright, J.-A., Taylor, D.A., Onorato, A.J.: Internal validation of STRmixTM for the interpretation of single source and mixed DNA profiles. Forensic Sci. Int. Genet. 29, 126–144 (2017)
Taylor, D., Bright, J.-A., Buckleton, J.: Interpreting forensic DNA profiling evidence without specifying the number of contributors. Forensic Sci. Int. Genet. 13, 269–280 (2014)
Russell, D., Christensen, W., Lindsey, T.: A simple unconstrained semi-continuous model for calculating likelihood ratios for complex DNA mixtures. Forensic Sci. Int. Genet. Suppl. Ser. 5, e37–e38 (2015)
Paoletti, D.R., Doom, T.E., Krane, C.M., Raymer, M.L., Krane, D.E.: Empirical analysis of the STR profiles resulting from conceptual mixtures. J. Forensic Sci. 50, JFS2004475-6 (2005)
Biedermann, A., Bozza, S., Konis, K., Taroni, F.: Inference about the number of contributors to a DNA mixture: comparative analyses of a Bayesian network approach and the maximum allele count method. Forensic Sci. Int. Genet. 6, 689–696 (2012)
Haned, H., Pène, L., Sauvage, F., Pontier, D.: The predictive value of the maximum likelihood estimator of the number of contributors to a DNA mixture. Forensic Sci. Int. Genet. 5, 281–284 (2011)
Haned, H., Pène, L., Lobry, J.R., Dufour, A.B., Pontier, D.: Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count? J. Forensic Sci. 56, 23–28 (2011)
Haned, H., Benschop, C.C.G., Gill, P.D., Sijen, T.: Complex DNA mixture analysis in a forensic context: evaluating the probative value using a likelihood ratio model. Forensic Sci. Int. Genet. 16, 17–25 (2015)
Egeland, T., Dalen, I., Mostad, P.F.: Estimating the number of contributors to a DNA profile. Int. J. Legal Med. 117, 271–275 (2003)
Curran, J.M., Triggs, C.M., Buckleton, J., Weir, B.S.: Interpreting DNA mixtures in structured populations. J. Forensic Sci. 44, 987–995 (1999)
Haned, H., De Jong, J.: LRmix Studio 2.1 user manual (2016)
Lauritzen, S.L.: Statistical and computational methodology for the analysis of forensic DNA mixtures with artefacts (2014)
Haned, H.: Forensim: an open-source initiative for the evaluation of statistical methods in forensic genetics. Forensic Sci. Int. Genet. 5, 265–268 (2011)
Gill, P., Sparkes, R., Pinchin, R., Clayton, T., Whitaker, J., Buckleton, J.: Interpreting simple STR mixtures using allele peak areas. Forensic Sci. Int. 91, 41–53 (1998)
Kling, D., Egeland, T., Tillmar, A.O.: FamLink – A user friendly software for linkage calculations in family genetics. Forensic Sci. Int. Genet. 6, 616–620 (2012)
Tvedebrink, T., Eriksen, P.S., Mogensen, H.S., Morling, N.: Evaluating the weight of evidence by using quantitative short tandem repeat data in DNA mixtures. J. R. Stat. Soc. Ser. C (Appl. Stat.) 59, 855–874 (2010)
Developmental validation of STRmixTM: Expert software for the interpretation of forensic DNA profiles. Forensic Sci. Int. Genet. 23, 226–239 (2016)
Bleka, Ø.: An introduction to EuroForMix (v1.8) 2016, 1–59 (2016)
Mehmood, R., Crowcroft, J.: Parallel Iterative solution method for Large Sparse Linear Equation Systems, vol. 22 (2005)
Mehmood, R.: Serial disk-based analysis of large stochastic models. In: Baier, C., Haverkort, Boudewijn R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 230–255. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4_7
Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance in healthcare organisations. In: 2010 International Conference on Intelligent Systems, Modelling and Simulation, pp. 431–436. IEEE (2010)
Mehmood, R., Crowcroft, J., Hand, S., Smith, S.: Grid-level computing needs pervasive debugging. In: The 6th IEEE/ACM International Workshop on Grid Computing, 2005, p. 8. IEEE (2005)
Tawalbeh, L.A., Mehmood, R., Benkhlifa, E., Song, H.: Mobile cloud computing model and big data analysis for healthcare applications. IEEE Access. 4, 6171–6180 (2016)
Tawalbeh, L.A., Bakhader, W., Mehmood, R., Song, H.: Cloudlet-based mobile cloud computing for healthcare applications. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2016)
Acknowledgments
The work carried out in this paper is supported by the HPC Center at the King Abdulaziz University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T. (2018). DNA Profiling Methods and Tools: A Review. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-94180-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-94180-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94179-0
Online ISBN: 978-3-319-94180-6
eBook Packages: Computer ScienceComputer Science (R0)