Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DNA Profiling Methods and Tools: A Review

  • Conference paper
  • First Online:
Smart Societies, Infrastructure, Technologies and Applications (SCITA 2017)

Abstract

DNA typing or profiling is a widely used practice in various forensic laboratories, used, for example, in sexual assault cases when the source of DNA mixture can combine different individuals such as the victim, the criminal, and the victim’s partner. DNA typing is considered one of the hardest problem in the forensic science domain, and it is an active area of research. The computational complexity of DNA typing increases significantly with the number of unknowns in the mixture. Different methods have been developed and implemented to address this problem. However, its computational complexity has been the major deterring factor holding its advancements and applications. In this paper, we review DNA profiling methods and tools with a particular focus on their computational performance and accuracy. Faster interpretations of DNA mixtures with a large number of unknowns and higher accuracies are expected to open up new frontiers for this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The American Heritage Medical Dictionary. Houghton Mifflin Co., Boston (2007)

    Google Scholar 

  2. Butler, J.M.: Fundamentals of Forensic DNA Typing. Academic Press/Elsevier (2010)

    Chapter  Google Scholar 

  3. Swaminathan, H., Grgicak, C.M., Medard, M., Lun, D.S.: NOCIt: a computational method to infer the number of contributors to DNA samples analyzed by STR genotyping. Forensic Sci. Int. Genet. 16, 172–180 (2015)

    Article  Google Scholar 

  4. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.: Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci. 109, 1128–1133 (2017)

    Article  Google Scholar 

  5. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart ubiquitous environments: a survey. IEEE Access. 5, 9533–9554 (2017)

    Article  Google Scholar 

  6. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: UTiLearn: a personalised ubiquitous teaching and learning system for smart societies. IEEE Access. 5, 2615–2635 (2017)

    Article  Google Scholar 

  7. Butler, J.M.: The future of forensic DNA analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 577–579 (2015)

    Article  Google Scholar 

  8. Paoletti, D.R., Krane, D.E., Raymer, M.L., Doom, T.E.: Inferring the number of contributors to mixed DNA profiles. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9, 113–122 (2012)

    Article  Google Scholar 

  9. Perez, J., Mitchell, A.A., Ducasse, N., Tamariz, J., Caragine, T.: Estimating the number of contributors to two-, three-, and four-person mixtures containing DNA in high template and low template amounts. Croat. Med. J. 52, 314–326 (2011)

    Article  Google Scholar 

  10. Gill, P., Haned, H.: A new methodological framework to interpret complex DNA profiles using likelihood ratios. Forensic Sci. Int. Genet. 7, 251–263 (2013)

    Article  Google Scholar 

  11. Weedn, V.W., Foran, D.R.: Forensic DNA typing. In: Leonard, D.G.B. (ed.) Molecular Pathology in Clinical Practice, pp. 793–810. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-19674-9_54

    Chapter  Google Scholar 

  12. Monich, U.J., Grgicak, C., Cadambe, V., Wu, J.Y., Wellner, G., Duffy, K., Medard, M.: A signal model for forensic DNA mixtures. In: 2014 48th Asilomar Conference on Signals, Systems and Computers, pp. 429–433. IEEE (2014)

    Google Scholar 

  13. Inman, K., Rudin, N., Cheng, K., Robinson, C., Kirschner, A., Inman-Semerau, L., Lohmueller, K.E.: Lab retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles. BMC Bioinf. 16, 298 (2015)

    Article  Google Scholar 

  14. Butler, J.M.: Advanced Topics in Forensic DNA Typing: Interpretation. Academic Press (2014)

    Google Scholar 

  15. Bille, T., Bright, J.-A., Buckleton, J.: Application of random match probability calculations to mixed STR profiles. J. Forensic Sci. 58, 474–485 (2013)

    Article  Google Scholar 

  16. Garofano, P., Caneparo, D., D’Amico, G., Vincenti, M., Alladio, E.: An alternative application of the consensus method to DNA typing interpretation for Low Template-DNA mixtures. Forensic Sci. Int. Genet. Suppl. Ser. 5, e422–e424 (2015)

    Article  Google Scholar 

  17. Kelly, H., Bright, J.-A., Buckleton, J.S., Curran, J.M.: A comparison of statistical models for the analysis of complex forensic DNA profiles. Sci. Justice 54, 66–70 (2014)

    Article  Google Scholar 

  18. Bleka, Ø., Storvik, G., Gill, P.: EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci. Int. Genet. 21, 35–44 (2016)

    Article  Google Scholar 

  19. Perlin, M.W., Dormer, K., Hornyak, J., Schiermeier-Wood, L., Greenspoon, S.: TrueAllele casework on Virginia DNA mixture evidence: computer and manual interpretation in 72 reported criminal cases. PLoS ONE 9, e92837 (2014)

    Article  Google Scholar 

  20. Gill, P., Haned, H., Eduardoff, M., Santos, C., Phillips, C., Parson, W.: The open-source software LRmix can be used to analyse SNP mixtures. Forensic Sci. Int. Genet. Suppl., Ser (2015)

    Google Scholar 

  21. Swaminathan, H., Garg, A., Grgicak, C.M., Medard, M., Lun, D.S.: CEESIt: A computational tool for the interpretation of STR mixtures. Forensic Sci. Int. Genet. 22, 149–160 (2016)

    Article  Google Scholar 

  22. Balding, D.J., Steele, C.: The likeLTD software: an illustrative analysis, explanation of the model, results of performance tests and version history. UCL Genet. Inst. 1, 1–49 (2014)

    Google Scholar 

  23. Moretti, T.R., Just, R.S., Kehl, S.C., Willis, L.E., Buckleton, J.S., Bright, J.-A., Taylor, D.A., Onorato, A.J.: Internal validation of STRmixTM for the interpretation of single source and mixed DNA profiles. Forensic Sci. Int. Genet. 29, 126–144 (2017)

    Article  Google Scholar 

  24. Taylor, D., Bright, J.-A., Buckleton, J.: Interpreting forensic DNA profiling evidence without specifying the number of contributors. Forensic Sci. Int. Genet. 13, 269–280 (2014)

    Article  Google Scholar 

  25. Russell, D., Christensen, W., Lindsey, T.: A simple unconstrained semi-continuous model for calculating likelihood ratios for complex DNA mixtures. Forensic Sci. Int. Genet. Suppl. Ser. 5, e37–e38 (2015)

    Article  Google Scholar 

  26. Paoletti, D.R., Doom, T.E., Krane, C.M., Raymer, M.L., Krane, D.E.: Empirical analysis of the STR profiles resulting from conceptual mixtures. J. Forensic Sci. 50, JFS2004475-6 (2005)

    Article  Google Scholar 

  27. Biedermann, A., Bozza, S., Konis, K., Taroni, F.: Inference about the number of contributors to a DNA mixture: comparative analyses of a Bayesian network approach and the maximum allele count method. Forensic Sci. Int. Genet. 6, 689–696 (2012)

    Article  Google Scholar 

  28. Haned, H., Pène, L., Sauvage, F., Pontier, D.: The predictive value of the maximum likelihood estimator of the number of contributors to a DNA mixture. Forensic Sci. Int. Genet. 5, 281–284 (2011)

    Article  Google Scholar 

  29. Haned, H., Pène, L., Lobry, J.R., Dufour, A.B., Pontier, D.: Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count? J. Forensic Sci. 56, 23–28 (2011)

    Article  Google Scholar 

  30. Haned, H., Benschop, C.C.G., Gill, P.D., Sijen, T.: Complex DNA mixture analysis in a forensic context: evaluating the probative value using a likelihood ratio model. Forensic Sci. Int. Genet. 16, 17–25 (2015)

    Article  Google Scholar 

  31. Egeland, T., Dalen, I., Mostad, P.F.: Estimating the number of contributors to a DNA profile. Int. J. Legal Med. 117, 271–275 (2003)

    Article  Google Scholar 

  32. Curran, J.M., Triggs, C.M., Buckleton, J., Weir, B.S.: Interpreting DNA mixtures in structured populations. J. Forensic Sci. 44, 987–995 (1999)

    Google Scholar 

  33. Haned, H., De Jong, J.: LRmix Studio 2.1 user manual (2016)

    Google Scholar 

  34. Lauritzen, S.L.: Statistical and computational methodology for the analysis of forensic DNA mixtures with artefacts (2014)

    Google Scholar 

  35. Haned, H.: Forensim: an open-source initiative for the evaluation of statistical methods in forensic genetics. Forensic Sci. Int. Genet. 5, 265–268 (2011)

    Article  Google Scholar 

  36. Gill, P., Sparkes, R., Pinchin, R., Clayton, T., Whitaker, J., Buckleton, J.: Interpreting simple STR mixtures using allele peak areas. Forensic Sci. Int. 91, 41–53 (1998)

    Article  Google Scholar 

  37. Kling, D., Egeland, T., Tillmar, A.O.: FamLink – A user friendly software for linkage calculations in family genetics. Forensic Sci. Int. Genet. 6, 616–620 (2012)

    Article  Google Scholar 

  38. Tvedebrink, T., Eriksen, P.S., Mogensen, H.S., Morling, N.: Evaluating the weight of evidence by using quantitative short tandem repeat data in DNA mixtures. J. R. Stat. Soc. Ser. C (Appl. Stat.) 59, 855–874 (2010)

    Article  MathSciNet  Google Scholar 

  39. Developmental validation of STRmixTM: Expert software for the interpretation of forensic DNA profiles. Forensic Sci. Int. Genet. 23, 226–239 (2016)

    Article  Google Scholar 

  40. Bleka, Ø.: An introduction to EuroForMix (v1.8) 2016, 1–59 (2016)

    Google Scholar 

  41. Mehmood, R., Crowcroft, J.: Parallel Iterative solution method for Large Sparse Linear Equation Systems, vol. 22 (2005)

    Google Scholar 

  42. Mehmood, R.: Serial disk-based analysis of large stochastic models. In: Baier, C., Haverkort, Boudewijn R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 230–255. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24611-4_7

    Chapter  MATH  Google Scholar 

  43. Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance in healthcare organisations. In: 2010 International Conference on Intelligent Systems, Modelling and Simulation, pp. 431–436. IEEE (2010)

    Google Scholar 

  44. Mehmood, R., Crowcroft, J., Hand, S., Smith, S.: Grid-level computing needs pervasive debugging. In: The 6th IEEE/ACM International Workshop on Grid Computing, 2005, p. 8. IEEE (2005)

    Google Scholar 

  45. Tawalbeh, L.A., Mehmood, R., Benkhlifa, E., Song, H.: Mobile cloud computing model and big data analysis for healthcare applications. IEEE Access. 4, 6171–6180 (2016)

    Article  Google Scholar 

  46. Tawalbeh, L.A., Bakhader, W., Mehmood, R., Song, H.: Cloudlet-based mobile cloud computing for healthcare applications. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

The work carried out in this paper is supported by the HPC Center at the King Abdulaziz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Alamoudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alamoudi, E., Mehmood, R., Albeshri, A., Gojobori, T. (2018). DNA Profiling Methods and Tools: A Review. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-319-94180-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94180-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94179-0

  • Online ISBN: 978-3-319-94180-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics