Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-criterion Evolutionary Algorithm with Model of the Immune System to Handle Constraints for Task Assignments

  • Conference paper
Artificial Intelligence and Soft Computing - ICAISC 2004 (ICAISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3070))

Included in the following conference series:

Abstract

In this paper, an evolutionary algorithm based on an immune system activity to handle constraints is discussed for three-criteria optimisation problem of finding a set of Pareto-suboptimal task assignments in parallel systems. This approach deals with a modified genetic algorithm cooperating with a main evolutionary algorithm. An immune system activity is emulated by a modified genetic algorithm to handle constraints. Some numerical results are submitted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balicki, J., Kitowski, Z.: Multicriteria Evolutionary Algorithm with Tabu Search for Task Assignment. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 373–384. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Coello Coello, C.A., Cortes, N.C.: Use of Emulations of the Immune System to Handle Constraints in Evolutionary Algorithms, Knowledge and Information Systems. An International Journal 1, 1–12 (2001)

    Google Scholar 

  3. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)

    MATH  Google Scholar 

  4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  5. D’haeseleer, P., et al.: An Immunological Approach to Change Detection. In: Proc. of IEEE Symposium on Research in Security and Privacy, Oakland (1996)

    Google Scholar 

  6. Farmer, J.D., Packard, N.H., Perelson, A.S.: The Immune System, Adaptation, and Machine Learning. Physica D 22, 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  7. Forrest, S., Perelson, A.S.: Genetic Algorithms and the Immune System. LNCS, pp. 320–325 (1991)

    Google Scholar 

  8. Helman, P., Forrest, S.: An Efficient Algorithm for Generating Random Antibody Strings. Technical Report CS-94-07, The University of New Mexico, Albuquerque (1994)

    Google Scholar 

  9. Jerne, N.K.: The Immune System. Scientific American 229(1), 52–60 (1973)

    Article  Google Scholar 

  10. Kim, J., Bentley, P.J.: Immune Memory in the Dynamic Clonal Selection Algorithm. In: Proc. of the First Int. Conf. on Artificial Immune Systems, Canterbury, pp. 57–65 (2002)

    Google Scholar 

  11. Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomorphous mapping, and Constrained Parameter Optimisation. Evolutionary Computation 7, 19–44 (1999)

    Article  Google Scholar 

  12. Smith, D.: Towards a Model of Associative Recall in Immunological Memory. Technical Report 94-9, University of New Mexico, Albuquerque (1994)

    Google Scholar 

  13. Weglarz, J. (ed.): Recent Advances in Project Scheduling. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  14. Wierzchon, S.T.: Generating Optimal Repertoire of Antibody Strings in an Artificial Immune System. In: Klopotek, M., Michalewicz, M., Wierzchon, S.T. (eds.) Intelligent Information Systems, pp. 119–133. Springer, Heidelberg (2000)

    Google Scholar 

  15. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balicki, J. (2004). Multi-criterion Evolutionary Algorithm with Model of the Immune System to Handle Constraints for Task Assignments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24844-6_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22123-4

  • Online ISBN: 978-3-540-24844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics