Abstract
In this paper, an evolutionary algorithm based on an immune system activity to handle constraints is discussed for three-criteria optimisation problem of finding a set of Pareto-suboptimal task assignments in parallel systems. This approach deals with a modified genetic algorithm cooperating with a main evolutionary algorithm. An immune system activity is emulated by a modified genetic algorithm to handle constraints. Some numerical results are submitted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balicki, J., Kitowski, Z.: Multicriteria Evolutionary Algorithm with Tabu Search for Task Assignment. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 373–384. Springer, Heidelberg (2001)
Coello Coello, C.A., Cortes, N.C.: Use of Emulations of the Immune System to Handle Constraints in Evolutionary Algorithms, Knowledge and Information Systems. An International Journal 1, 1–12 (2001)
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)
D’haeseleer, P., et al.: An Immunological Approach to Change Detection. In: Proc. of IEEE Symposium on Research in Security and Privacy, Oakland (1996)
Farmer, J.D., Packard, N.H., Perelson, A.S.: The Immune System, Adaptation, and Machine Learning. Physica D 22, 187–204 (1986)
Forrest, S., Perelson, A.S.: Genetic Algorithms and the Immune System. LNCS, pp. 320–325 (1991)
Helman, P., Forrest, S.: An Efficient Algorithm for Generating Random Antibody Strings. Technical Report CS-94-07, The University of New Mexico, Albuquerque (1994)
Jerne, N.K.: The Immune System. Scientific American 229(1), 52–60 (1973)
Kim, J., Bentley, P.J.: Immune Memory in the Dynamic Clonal Selection Algorithm. In: Proc. of the First Int. Conf. on Artificial Immune Systems, Canterbury, pp. 57–65 (2002)
Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomorphous mapping, and Constrained Parameter Optimisation. Evolutionary Computation 7, 19–44 (1999)
Smith, D.: Towards a Model of Associative Recall in Immunological Memory. Technical Report 94-9, University of New Mexico, Albuquerque (1994)
Weglarz, J. (ed.): Recent Advances in Project Scheduling. Kluwer Academic Publishers, Dordrecht (1998)
Wierzchon, S.T.: Generating Optimal Repertoire of Antibody Strings in an Artificial Immune System. In: Klopotek, M., Michalewicz, M., Wierzchon, S.T. (eds.) Intelligent Information Systems, pp. 119–133. Springer, Heidelberg (2000)
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Balicki, J. (2004). Multi-criterion Evolutionary Algorithm with Model of the Immune System to Handle Constraints for Task Assignments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_57
Download citation
DOI: https://doi.org/10.1007/978-3-540-24844-6_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22123-4
Online ISBN: 978-3-540-24844-6
eBook Packages: Springer Book Archive