Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Concept-Based Data Mining with Scaled Labeled Graphs

  • Conference paper
Conceptual Structures at Work (ICCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3127))

Included in the following conference series:

Abstract

Graphs with labeled vertices and edges play an important role in various applications, including chemistry. A model of learning from positive and negative examples, naturally described in terms of Formal Concept Analysis (FCA), is used here to generate hypotheses about biological activity of chemical compounds. A standard FCA technique is used to reduce labeled graphs to object-attribute representation. The major challenge is the construction of the context, which can involve ten thousands attributes. The method is tested against a standard dataset from an ongoing international competition called Predictive Toxicology Challenge (PTC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical foundations. Springer-Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  3. Ganter, B., Kuznetsov, S.O.: Hypotheses and version spaces. In: Lex, W., de Moor, A., Ganter, B. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, pp. 83–95. Springer, Heidelberg (2003)

    Google Scholar 

  4. Kuznetsov, S.O.: Machine Learning and Formal Concept Analysis. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Kuznetsov, S.O., Finn, V.K.: On a model of learning and classification based on similarity operation. Obozrenie Prikladnoii Promyshlennoi Matematiki 3(1), 66–90 (1996) (in Russian)

    MATH  Google Scholar 

  6. Kuznetsov, S.O.: Learning of Simple Conceptual Graphs from Positive and Negative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Ganter, B., Kuznetsov, S.: Formalizing Hypotheses with Concepts. In: Ganter, B., Mineau, G. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 342–356. Springer, Heidelberg (2000)

    Google Scholar 

  8. Finn, V.K.: Plausible Reasoning in Systems of JSM Type. Itogi Nauki i Tekhniki, Seriya Informatika 15, 54–101 (1991) (in Russian)

    Google Scholar 

  9. Finn, V.K.: On Machine-Oriented Formalization of Plausible Reasoning in the Style of F. Backon–J. S. Mill. Semiotika i Informatika 20, 35–101 (1983) (in Russian)

    Google Scholar 

  10. Kuznetsov, S.O.: JSM-method as a machine learning method. Itogi Nauki i Tekhniki, ser. Informatika 15, 17–50 (1991) (in Russian)

    Google Scholar 

  11. Helma, C., King, R.D., Kramer, S., Srinvasan, A. (eds.): Proc. of the Workshop on Predictive Toxicology Challegnge at the 5th Conference on Data Mining and Knowledge Discovery (PKDD 2001) Freiburg (Germany) (September 7, 2001), http://www.predictivetoxicology.org/ptc/

  12. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)

    MathSciNet  Google Scholar 

  13. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. Assoc. Comput. Mach. 23, 31–42 (1976)

    MathSciNet  Google Scholar 

  14. Grigoriev, P.A., Yevtushenko, S.A., Grieser, G.: QuDA, a data miner’s discovery enviornment. Technical Report AIDA 03 06, FG Intellektik, FB Informatik, Technische Universität Darmstadt (September 2003), http://www.intellektik.informatik.tudarmstadt.de/~peter/QuDA.pdf

  15. Grigoriev, P., Yevtushenko, S.: JSM-Reasoning as a data mining tool. In: Proceedings of the 8th Russian National Conference on Artificial Intelligence, CAI-2002, pp. 112–122, Moscow (2002). PhysMathLit (in Russian)

    Google Scholar 

  16. DaMiT, the Data Mining online Tutorial, http://damit.dfki.de

  17. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Machine Learning 42, 203–231 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V. (2004). Concept-Based Data Mining with Scaled Labeled Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds) Conceptual Structures at Work. ICCS 2004. Lecture Notes in Computer Science(), vol 3127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27769-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27769-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22392-4

  • Online ISBN: 978-3-540-27769-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics