Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Active Shape Model Segmentation Using Local Edge Structures and AdaBoost

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3150))

Included in the following conference series:

Abstract

The paper describes a machine learning approach for improving active shape model segmentation, which can achieve high detection rates. Rather than represent the image structure using intensity gradients, we extract local edge features for each landmark using steerable filters. A machine learning algorithm based on AdaBoost selects a small number of critical features from a large set and yields extremely efficient classifiers. These non-linear classifiers are used, instead of the linear Mahalanobis distance, to find optimal displacements by searching along the direction perpendicular to each landmark. These features give more accurate and reliable matching between model and new images than modeling image intensity alone. Experimental results demonstrated the ability of this improved method to accurately locate edge features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Transaction on Pattern Analysis and Machine Intelligence 13, 891–906 (1991)

    Article  Google Scholar 

  2. Greenspan, H., Belongie, S., Goodman, R., Perona, P., Rakshit, S., Anderson, C.: Overcome-plete steerable pyramid filters and rotation invariance. In: Proceedings of the IEEE Con-ference on Computer Vision and Pattern Recognition (1994)

    Google Scholar 

  3. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  4. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Med. Image Anal. 1, 91–108 (1996)

    Article  Google Scholar 

  5. Sethian, J.A.: Level set methods and fast marching methods, 2nd edn. Cambridge Univ. Press, Cambridge (1999)

    MATH  Google Scholar 

  6. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models- their training and application, Computer vision and image understanding, 61, 38-59 (1995)

    Google Scholar 

  7. van Ginneken, B., Frangi, A.F., Staal, J.J., ter Romeny, B.M.H., Max, A.: Vier-gever, Active Shape Model Segmentation With Optimal Features. IEEE Trans. On Medi-cal Imaging 21, 924–933 (2002)

    Article  Google Scholar 

  8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learing and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)

    Google Scholar 

  9. Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The use of active shape models for locating structures in medical images. Image and Vision Computing 12, 355–365 (1994)

    Article  Google Scholar 

  10. Solloway, S., Taylor, C.J., Hutchinson, C.E., Waterton, J.C.: Quantification of articular cartilage from MR images using active shape models. In: 4th European Conference on Computer Vision, Cambridge, England, pp. 400–412 (1996)

    Google Scholar 

  11. Scott, I.M., Cootes, T.F., Taylor, C.J.: Improving Appearance Model Matching Using Local Image Structure. In: Proc. Information Processing in Medical Imaging, pp. 258–269 (2003)

    Google Scholar 

  12. Jiao, F., Li, S.Z., Shum, H.Y., Schuurmans, D.: Face Alignment Using Statistical Mod-els and Wavelet Features. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 321–327 (2003)

    Google Scholar 

  13. Johnson, R.A., Wichern, D.W.: Multivariate Statistics, a Practical Approach. Chapman & Hall, Boca Raton (1988)

    Google Scholar 

  14. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explana-tion for the effectiveness of voting methods. In: Proceedings of the Fourteenth Interna-tional Conference on Machine Learning (1997)

    Google Scholar 

  15. Goodall, C.: Procrsutes methods in the statistical analsis of shapes. J. Roy. Statist. Soc. B 53, 285–339 (1991)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, S., Zhu, L., Jiang, T. (2004). Active Shape Model Segmentation Using Local Edge Structures and AdaBoost. In: Yang, GZ., Jiang, TZ. (eds) Medical Imaging and Augmented Reality. MIAR 2004. Lecture Notes in Computer Science, vol 3150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28626-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28626-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22877-6

  • Online ISBN: 978-3-540-28626-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics