Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scalable Analysis of Linear Systems Using Mathematical Programming

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3385))

Abstract

We present a method for generating linear invariants for large systems. The method performs forward propagation in an abstract domain consisting of arbitrary polyhedra of a predefined fixed shape. The basic operations on the domain like abstraction, intersection, join and inclusion tests are all posed as linear optimization queries, which can be solved efficiently by existing LP solvers. The number and dimensionality of the LP queries are polynomial in the program dimensionality, size and the number of target invariants. The method generalizes similar analyses in the interval, octagon, and octahedra domains, without resorting to polyhedral manipulations. We demonstrate the performance of our method on some benchmark programs.

This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134 and CCR-02-09237, by ARO grant DAAD19-01-1-0723, by ARPA/AF contracts F33615-00-C-1693 and F33615-99-C-3014, by NAVY/ONR contract N00014-03-1-0939, and by the Siebel Graduate Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast accelereation of symbolic transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 118–121. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: ACM SIGPLAN PLDI 2003, vol. 548030, pp. 196–207. ACM Press, New York (2003)

    Google Scholar 

  4. Clarisó, R., Cortadella, J.: The octahedron abstract domain. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 312–327. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proceedings of the Second International Symposium on Programming, Dunod, Paris, France, pp. 106–130 (1976)

    Google Scholar 

  6. Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: ACM Principles of Programming Languages, pp. 238–252 (1977)

    Google Scholar 

  7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the variables of a program. In: ACM Principles of Programming Languages, January 1978, pp. 84–97 (1978)

    Google Scholar 

  8. Halbwachs, N., Proy, Y., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)

    Article  Google Scholar 

  9. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6, 133–151 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. Makhorin, A.: The GNU Linear Programming Kit (2000), http://www.gnu.org/software/glpk/glpk.html

  11. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New York (1995)

    Google Scholar 

  12. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Miné, A.: The octagon abstract domain. In: AST 2001 in WCRE 2001, pp. 310–319. IEEE CS Press, Los Alamitos (2001)

    Google Scholar 

  14. Parrilo, P.A.: Semidefinite programming relaxation for semialgebraic problems. Mathematical Programming Ser. B 96(2), 293–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sankaranarayanan, S., Sipma, H.B., Manna, Z. (2005). Scalable Analysis of Linear Systems Using Mathematical Programming. In: Cousot, R. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2005. Lecture Notes in Computer Science, vol 3385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30579-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30579-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24297-0

  • Online ISBN: 978-3-540-30579-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics