Abstract
We introduce a new cryptographic tool: multiset hash functions. Unlike standard hash functions which take strings as input, multiset hash functions operate on multisets (or sets). They map multisets of arbitrary finite size to strings (hashes) of fixed length. They are incremental in that, when new members are added to the multiset, the hash can be updated in time proportional to the change. The functions may be multiset-collision resistant in that it is difficult to find two multisets which produce the same hash, or just set-collision resistant in that it is difficult to find a set and a multiset which produce the same hash.
We demonstrate how set-collision resistant multiset hash functions make an existing offline memory integrity checker secure against active adversaries. We improve on this checker such that it can use smaller time stamps without increasing the frequency of checks. The improved checker uses multiset-collision resistant multiset hash functions.
Chapter PDF
Similar content being viewed by others
Keywords
References
Ajtai, M.: Generating hard instances of lattice problems. In: 28th ACM STOC, pp. 99–108 (1996)
Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 216–233. Springer, Heidelberg (1994)
Bellare, M., Guerin, R., Rogaway, P.: XOR MACs: New methods for message authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)
Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: Incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)
Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of memories. Algorithmica 12, 225–244 (1994)
Clarke, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Offline integrity checking of untrusted storage. MIT-LCS-TR-871 (November 2002)
Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice problems. In: Theory of Cryptography Library 96-09 (July 1996)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM 33(4), 210–217 (1986)
Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. In: 22nd ACM STOC, pp. 213–223 (1990)
NIST. FIPS PUB 180-1: Secure Hash Standard (April 1995)
Rivest, R.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992)
Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: Aegis: Architecture for tamper-evident and tamper-resistant processing. In: Proceedings of the 17th Int’l Conference on Supercomputing (June 2003)
Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: Efficient memory integrity verification and encryption for secure processors. In: Proceedings of the 36th Int’l Symposium on Microarchitecture (December 2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Clarke, D., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E. (2003). Incremental Multiset Hash Functions and Their Application to Memory Integrity Checking. In: Laih, CS. (eds) Advances in Cryptology - ASIACRYPT 2003. ASIACRYPT 2003. Lecture Notes in Computer Science, vol 2894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40061-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-40061-5_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20592-0
Online ISBN: 978-3-540-40061-5
eBook Packages: Springer Book Archive