Abstract
A broadcast encryption scheme allows the sender to securely distribute data to a dynamically changing set of users over an insecure channel. One of the most challenging settings for this problem is that of stateless receivers, where each user is given a fixed set of keys which cannot be updated through the lifetime of the system. This setting was considered by Naor, Naor and Lotspiech [17], who also present a very efficient “Subset Difference” (SD) method for solving this problem. The efficiency of this method (which also enjoys efficient traitor tracing mechanism and several other useful features) was recently improved by Halevi and Shamir [12], who called their refinement the “Layered SD” (LSD) method. Both of the above methods were originally designed to work in the centralized symmetric key setting, where only the trusted designer of the system can encrypt messages to users. On the other hand, in many applications it is desirable not to store the secret keys “on-line”, or to allow untrusted users to broadcast information. This leads to the question of building a public key broadcast encryption scheme for stateless receivers; in particular, of extending the elegant SD/LSD methods to the public key setting. Naor et al. [17] notice that the natural technique for doing so will result in an enormous public key and very large storage for every user. In fact, [17] pose this question of reducing the public key size and user’s storage as the first open problem of their paper. We resolve this question in the affirmative, by demonstrating that an O(1) size public key can be achieved for both of SD/LSD methods, in addition to the same (small) user’s storage and ciphertext size as in the symmetric key setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)
Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption: Analysis of the DES Modes of Operation. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science - FOCS 1997, pp. 394–403 (1997)
Boneh, D., Frankling, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast Security: A Taxonomy and some Efficient Constructions. In: Proceedings of IEEE INFOCOM 1999, vol. 2, pp. 708–716 (1999)
Canetti, R., Malkin, T., Nissim, K.: Efficient Communication-Storage Tradeoffs for Multicast Encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 459–474. Springer, Heidelberg (1999)
Dodis, Y., Fazio, N.: Public Key Trace and Revoke Scheme Secure against Adaptive Chosen Ciphertext Attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002)
Dolev, D., Dwork, C., Naor, M.: Nonmalleable Criptography. SIAM Journal on Discrete Mathematics 30(2), 391–437 (2000)
Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)
Gafni, E., Staddon, J., Yin, Y.L.: Efficient Methods for Integrating Traceability and Broadcast Encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 372–387. Springer, Heidelberg (1999)
Garay, A., Staddon, J., Wool, A.: Long-Lived Broadcast Encryption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)
Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)
Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)
Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)
Kumar, R., Rajagopalan, S., Sahai, A.: Coding Constructions for Blacklisting Problems without Computational Assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)
Luby, M., Staddon, J.: Combinatorial Bounds for Broadcast Encryption. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 512–526. Springer, Heidelberg (1998)
McGrew, D.A., Sherman, A.T.: Key Establishment in Large Dynamic Groups Using One-Way Function Trees (1998) (manuscript)
Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)
Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)
Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In: 22nd Annual ACM Symposium on Theory of Computing. LNCS, vol. 547, pp. 427–437. Springer, Heidelberg (1990)
Shamir, A.: Identity Based Cryptosystems and Signatures Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)
Shoup, V.: A Proposal for an ISO Standard for Public-Key Encryption (2001) (manuscript)
Tzeng, W.G., Tzeng, Z.J.: A Public-Key Traitor Tracing Scheme with Revocation Using Dynamics Shares. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 207–224. Springer, Heidelberg (2001)
Wallner, D., Harder, E., Agee, R.: Key Management for Multicast: Issues and Architectures (1997), Available at ftp://ftp.ietf.org/rfc/rfc2627.txt
Wong, C.K., Gouda, M., Lam, S.: Secure Group Communications Using Key Graphs. In: Proceedings of the ACM SIGCOMM 1998 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dodis, Y., Fazio, N. (2003). Public Key Broadcast Encryption for Stateless Receivers. In: Feigenbaum, J. (eds) Digital Rights Management. DRM 2002. Lecture Notes in Computer Science, vol 2696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44993-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-44993-5_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40410-1
Online ISBN: 978-3-540-44993-5
eBook Packages: Springer Book Archive