Abstract
Region stability allows one to formalize hybrid systems whose trajectories may oscillate (within a given allowance) even after having ‘stabilized’. Unfortunately, until today no proof rule (giving necessary and sufficient conditions for the purpose of verifying region stability) has been available. This paper fills the gap. Our (sound and complete) proof rule connects region stability with the finiteness of specific state sequences and thus with the emerging set of verification methods for program termination.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Branicky, M.S.: Stability of hybrid systems: State of the art. In: CDC’97 (1997)
Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. Trans. on Automatic Control (1998)
Bradley, A.R., Sipma, H., Manna, Z.: Termination of Polynomial Programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, Springer, Heidelberg (2005)
Cousot, P.: Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, Springer, Heidelberg (2005)
Cook, B., Podelski, A., Rybalchenko, A.: Abstraction Refinement for Termination. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, Springer, Heidelberg (2005)
Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI’06 (2006)
Colon, M., Sipma, H.: Synthesis of Linear Ranking Functions. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, Springer, Heidelberg (2001)
Colon, M., Sipma, H.: Practical Methods for Proving Program Termination. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)
Gotsman, A., et al.: Proving that software eventually does something good. In: POPL’07 (to appear)
Henzinger, T.A.: The Theory of Hybrid Automata. In: LICS’96 (1996)
Liberzon, D.: Switching in Systems and Control. Birkhäuser, Basel (2003)
Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Practical Stability of Nonlinear Systems. World Scientific, Singapore (1990)
Pettersson, S.: Analysis and Design of Hybrid Systems. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden (1999)
Podelski, A., Rybalchenko, A.: Transition Invariants. In: LICS (2004)
Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, Springer, Heidelberg (2004)
Podelski, A., Rybalchenko, A.: Transition Predicate Abstraction and Fair Termination. In: POPL’05 (2005)
Podelski, A., Wagner, S.: Model Checking of Hybrid Systems: From Reachability towards Stability. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, Springer, Heidelberg (2006)
Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, Springer, Heidelberg (2004)
Ye, H., Michel, A.N., Hou, L.: Stability Analysis of discontinuous Dynamical Systems with Applications. In: IFAC’96 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Podelski, A., Wagner, S. (2007). A Sound and Complete Proof Rule for Region Stability of Hybrid Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds) Hybrid Systems: Computation and Control. HSCC 2007. Lecture Notes in Computer Science, vol 4416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71493-4_76
Download citation
DOI: https://doi.org/10.1007/978-3-540-71493-4_76
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71492-7
Online ISBN: 978-3-540-71493-4
eBook Packages: Computer ScienceComputer Science (R0)