Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Case-Based Recommendation

  • Chapter
The Adaptive Web

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4321))

Abstract

Recommender systems try to help users access complex information spaces. A good example is when they are used to help users to access online product catalogs, where recommender systems have proven to be especially useful for making product suggestions in response to evolving user needs and preferences. Case-based recommendation is a form of content-based recommendation that is well suited to many product recommendation domains where individual products are described in terms of a well defined set of features (e.g., price, colour, make, etc.). These representations allow case-based recommenders to make judgments about product similarities in order to improve the quality of their recommendations and as a result this type of approach has proven to be very successful in many e-commerce settings, especially when the needs and preferences of users are ill-defined, as they often are. In this chapter we will describe the basic approach to case-based recommendation, highlighting how it differs from other recommendation technologies, and introducing some recent advances that have led to more powerful and flexible recommender systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–52 (1994)

    Google Scholar 

  2. Aha, D.W.: Proceedings of the Workshop in Mixed-Initiative Case-Based Reasoning. Workshop Programme at the 6th European Conference in Case-Based Reasoning (2002), http://home.earthlink.net/~dwaha/research/meetings/eccbr02-micbrw/

  3. Aha, D.W., Maney, T., Breslow, L.A.: Supporting Dialogue Inferencing in Conversational Case-Based Reasoning. In: Smyth, B., Cunningham, P. (eds.) Proceedings of the 4th European Workshop on Case-Based Reasoning, pp. 262–273. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Aha, D.W., Breslow, L.A.: Refining Conversational Case Libraries. In: Leake, D., Plaza, E. (eds.) Proceedings of the 2nd International Conference on Case-Based Reasoning, pp. 267–278. Springer, Heidelberg (1997)

    Google Scholar 

  5. Balabanovic, M., Shoham, Y.: FAB: Content-Based Collaborative Recommender. Communications of the ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  6. Bergmann, R., Cunningham, P.: Acquiring Customer’s Requirements in Electronic Commerce. Artificial Intelligence Review 18(3–4), 163–193 (2002)

    Article  Google Scholar 

  7. Bergmann, R., Richter, M., Schmitt, S., Stahl, A., Vollrath, I.: Utility-Oriented Matching: A New Research Direction for Case-Based Reasoning. In: Proceedings of the German Workshop on Case-Based Reasoning, Baden-Baden, pp. 264–274 (2001)

    Google Scholar 

  8. Billsus, D., Pazzani, M.J.: Adaptive news access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 550–572. Springer, Heidelberg (2007)

    Google Scholar 

  9. Billsus, D., Pazzani, M.J., Chen, J.: A learning agent for wireless news access. In: IUI ’00: Proceedings of the 5th international conference on Intelligent user interfaces, pp. 33–36. ACM Press, New York (2000), doi:10.1145/325737.325768

    Chapter  Google Scholar 

  10. Bradley, K., Rafter, R., Smyth, B.: Case-Based User Profiling for Content Personalization. In: Brusilovsky, P., Stock, O., Strapparava, C. (eds.) AH 2000. LNCS, vol. 1892, pp. 62–72. Springer, Heidelberg (2000)

    Google Scholar 

  11. Bradley, K., Smyth, B.: Improving Recommendation Diversity. In: O’Donoghue, D. (ed.) Proceedings of the 12th National Conference in Artificial Intelligence and Cognitive Science, Maynooth, Ireland, pp. 75–84 (2001)

    Google Scholar 

  12. Branting, K., Lester, J., Mott, B.: Dialog Management for Conversational Case-Based Reasoning. In: Funk, P., Calero, P.A.G. (eds.) Proceedings of the 7th European Conference on Case-Based Reasoning, pp. 77–90. Springer, Heidelberg (2004)

    Google Scholar 

  13. Branting, K.: Acquiring Customer Preferences from Return-Set Selections. In: Aha, D.W., Watson, I. (eds.) Proceedings of the 4th International Conference on Case-Based Reasoning, pp. 59–73. Springer, Heidelberg (2001)

    Google Scholar 

  14. Bridge, D.: Diverse Product Recommendations Using an Expressive Language for Case-Retrieval. In: Craw, S., Preece, A. (eds.) Proceedings of the 6th European Conference on Case-Based Reasoning, pp. 43–57. Springer, Heidelberg (2002)

    Google Scholar 

  15. Bridge, D.: Towards conversational recommender systems: A dialogue grammar approach. In: Aha, D.W. (ed.) Proceedings of the Workshop in Mixed-Initiative Case-Based Reasoning, Workshop Programme at the 6th European Conference in Case-Based Reasoning, pp. 9–22 (2002)

    Google Scholar 

  16. Bridge, D., Goker, M., McGinty, L., Smyth, B.: Case-Based Recommender Systems. Knowledge Engineering Review 20(3), 315–320 (2006)

    Article  Google Scholar 

  17. Bridge, D.: Product recommendation systems: A new direction. In: Weber, R., Wangenheim, C. (eds.) Procs. of the Workshop Programme at the Fourth International Conference on Case-Based Reasoning, pp. 79–86 (2001)

    Google Scholar 

  18. Brusilovsky, P., Millan, E.: User Models for Adaptive Hypermedia and Adaptive Educational Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)

    Google Scholar 

  19. Burke, R.: Conceptual Indexing and Active Retrieval of Video for Interactive Learning Environments. Knowledge-Based Systems 9(8), 491–499 (1996)

    Article  Google Scholar 

  20. Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)

    Google Scholar 

  21. Burke, R., Hammond, K., Young, B.: Knowledge-based navigation of complex information spaces. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland, pp. 462–468. MIT Press, Cambridge (1996)

    Google Scholar 

  22. Burke, R., Hammond, K., Young, B.C.: The FindMe Approach to Assisted Browsing. Journal of IEEE Expert 12(4), 32–40 (1997)

    Article  Google Scholar 

  23. Cawsey, A., Grasso, F., Paris, C.: Adaptive Information for Consumers of Healthcare. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 465–484. Springer, Heidelberg (2007)

    Google Scholar 

  24. Chin, D.N.: Acquiring User Models. Artificial Intelligence Review 7(3-4), 185–197 (1989)

    Article  Google Scholar 

  25. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In: NIPS ’97: Proceedings of the 1997 conference on Advances in neural information processing systems 10, pp. 451–457. MIT Press, Cambridge (1998)

    Google Scholar 

  26. Cotter, P., Smyth, B.: WAPing the Web: Content Personalisation for WAP-Enabled Devices. In: Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Trento, Italy, pp. 98–108. Springer, Heidelberg (2000)

    Google Scholar 

  27. Coyle, L., Cunningham, P.: Improving Recommendation Ranking by Learning Personal Feature Weights. In: Funk, P., Calero, P.A.G. (eds.) Proceedings of the 7th European Conference on Case-Based Reasoning, pp. 560–572. Springer, Heidelberg (2004)

    Google Scholar 

  28. Coyle, L., Cunningham, P., Hayes, C.: A Case-Based Personal Travel Assistant for Elaborating User Requirements and Assessing Offers. In: Craw, S., Preece, A. (eds.) Proceedings of the 6th European Conference on Case-Based Reasoning, pp. 505–518. Springer, Heidelberg (2002)

    Google Scholar 

  29. Cunningham, P., Doyle, D., Loughrey, J.: An Evaluation of the Usefulness of Case-Based Explanation. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 191–199. Springer, Heidelberg (2003)

    Google Scholar 

  30. Dahlen, B., Konstan, J., Herlocker, J., Good, N., Borchers, A., Riedl, J.: Jump-starting movieLens: User benefits of starting a collaborative filtering system with ”dead-data”. TR 98-017, University of Minnesota (1998)

    Google Scholar 

  31. de Mantaras, R.L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M-L., Cox, M.T., Forbus, K., Keane, M., Aamody, A., Watson, I.: Retrieval, reuse, Revision, and Retention in Case-Based Reasoning. Knowledge Engineering Review 20(3), 215–240 (2006)

    Article  Google Scholar 

  32. Doyle, M., Cunningham, P.: A Dynamic Approach to Reducing Dialog in On-Line Decision Guides. In: Blanzieri, E., Portinale, L. (eds.) Proceedings of the 5th European Workshop on Case-Based Reasoning, pp. 49–60. Springer, Heidelberg (2000)

    Google Scholar 

  33. Faltings, B., Pu, P., Torrens, M., Viappiani, P.: Design Example-Critiquing Interaction. In: Proceedings of the International Conference on Intelligent User Interface. IUI-2004, Funchal, Madeira, Portugal, pp. 22–29. ACM Press, New York (2004)

    Google Scholar 

  34. Fox, S., Leake, D.B.: Using Introspective Reasoning to Refine Indexing. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, p. 391. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  35. Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User Profiles for Personalized Information Access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)

    Google Scholar 

  36. Gervas, P., Gupta, K.M.: Proceedings European Conference on Case-Based Reasoning (ECCBR-04) Explanation Workshop, Madrid, Spain (2004), https://www.cs.tcd.ie/research_groups/mlg/ecbrws2004/

  37. Goker, M., Thompson, C.A.: Personalized Conversational Case-Based Recommendation. In: Blanzieri, E., Portinale, L. (eds.) Proceedings of the 5th European Workshop on Case-Based Reasoning, pp. 99–111. Springer, Heidelberg (2000)

    Google Scholar 

  38. Goy, A., Ardissono, L., Petrone, G.: Personalization in E-Commerce Applications. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 485–520. Springer, Heidelberg (2007)

    Google Scholar 

  39. Hinkle, D., Toomey, C.: Applying Case-Based Reasoning to Manufacturing. Artificial Intelligence Magazine 16(1), 65–73 (1995)

    Google Scholar 

  40. Hurley, G., Wilson, D.C.: DubLet: An Online CBR System for Rental Property Accommodation. In: Aha, D.W., Watson, I. (eds.) Proceedings of the 4th International Conference on Case-Based Reasoning, pp. 660–674. Springer, Heidelberg (2001)

    Google Scholar 

  41. Jameson, A., Smyth, B.: Recommending to Groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)

    Google Scholar 

  42. Juell, P., Paulson, P.: Using Reinforcement Learning for Similarity Assessment in Case-Based Systems. IEEE Intelligent Systems 18(4), 60–67 (2003)

    Article  Google Scholar 

  43. Kim, Y., Ok, S., Woo, Y.: A Case-Based Recommender using Implicit Rating Techniques. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 62–72. Springer, Heidelberg (2002)

    Google Scholar 

  44. Kobsa, A.: Generic User Modeling Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 136–154. Springer, Heidelberg (2007)

    Google Scholar 

  45. Kolodner, J.: Judging which is the ”best” case for a case-based reasoner. In: Proceedings of the Second Workshop on Case-Based Reasoning, pp. 77–81. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  46. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  47. Konstan, J.A., Miller, B.N, Maltz, D., Herlocker, J.L., Gorgan, L.R., Riedl, J.: GroupLens: Applying collaborative filtering to Usenet news. Communications of the ACM 40(3), 77–87 (1997)

    Article  Google Scholar 

  48. Leake, D.: Case-Based Reasoning: Experiences,Lessons and Future Directions. MIT Press, Cambridge (1996)

    Google Scholar 

  49. Leake, D.B.: Constructive Similarity Assessment: Using Stored Cases to Define New Situations. In: Proceedings of the 14th Annual Conference of the Cognitive Science Society, pp. 313–318. Lawrence Erlbaum Associates, Mahwah (1992)

    Google Scholar 

  50. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the Dynamic Generation of Compound Critiques in Conversational Recommender Systems. In: De Bra, P., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 176–184. Springer, Heidelberg (2004)

    Google Scholar 

  51. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Experiments in dynamic critiquing. In: IUI ’05: Proceedings of the 10th international conference on Intelligent user interfaces, pp. 175–182. ACM Press, New York (2005), doi:10.1145/1040830.1040871

    Chapter  Google Scholar 

  52. McGinty, L., Smyth, B.: Comparison-Based Recommendation. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 575–589. Springer, Heidelberg (2002)

    Google Scholar 

  53. McGinty, L., Smyth, B.: On The Role of Diversity in Conversational Recommender Systems. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 276–290. Springer, Heidelberg (2003)

    Google Scholar 

  54. McGinty, L., Smyth, B.: Tweaking Critiquing. In: Proceedings of the Workshop on Personalization and Web Techniques at the International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  55. McSherry, D.: Increasing Recommendation Diversity Without Loss of Similarity. In: Proceedings of the Sixth UK Workshop on Case-Based Reasoning, Cambridge, UK, pp. 23–31 (2001)

    Google Scholar 

  56. McSherry, D.: Diversity-Conscious Retrieval. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 219–233. Springer, Heidelberg (2002)

    Google Scholar 

  57. McSherry, D.: Explanation in Case-Based Reasoning: An Evidential Approach. In: Lees, B. (ed.) Proceedings of the 8th UK Workshop on Case-Based Reasoning, Cambridge, UK (2003)

    Google Scholar 

  58. McSherry, D.: Similarity and Compromise. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 291–305. Springer, Heidelberg (2003)

    Google Scholar 

  59. McSherry, D.: Explaining the Pros and Cons of Conclusions in CBR. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 317–330. Springer, Heidelberg (2004)

    Google Scholar 

  60. McSherry, D.: Incremental Relaxation of Unsuccessful Queries. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 331–345. Springer, Heidelberg (2004)

    Google Scholar 

  61. Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized Search on the World-Wide Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)

    Google Scholar 

  62. Mobasher, B.: Data Mining for Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 90–135. Springer, Heidelberg (2007)

    Google Scholar 

  63. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: DL ’00: Proceedings of the fifth ACM conference on Digital libraries, pp. 195–204. ACM Press, New York (2000), doi:10.1145/336597.336662

    Chapter  Google Scholar 

  64. Munoz-Avila, H., Aha, D., Breslow, L.: Integrating Conversational Case Retrieval with Generative Planning. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 210–221. Springer, Heidelberg (2000)

    Google Scholar 

  65. Nichols, D.: Implicit Rating and Filtering. In: Proceedings of 5th DELOS Workshop on Filtering and Collaborative Filtering, Budapest, Hungary (Nov. 1997)

    Google Scholar 

  66. O’Sullivan, D., Smyth, B., Wilson, D.: In-Depth Analysis of Similarity Knowledge and Metric Contributions to Recommender Performance. In: Proceedings of the 17th International FLAIRS Conference. FLAIRS 2004 CD, Miami Beach, Florida, May 17-19, AAAI Press, FLAIRS (2004)

    Google Scholar 

  67. O’Sullivan, D., Wilson, D., Smyth, B.: Improving Case-Based Recommendation: A Collaborative Filtering Approach. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 278–291. Springer, Heidelberg (2002)

    Google Scholar 

  68. O’Sullivan, D., Wilson, D., Smyth, B.: Preserving Recommender Accuracy and Diversity in Sparse Datasets. In: Russell, I., Haller, S. (eds.) Proceedings of the 16th International FLAIRS Conference, pp. 139–144. AAAI Press, Menlo Park (2003)

    Google Scholar 

  69. Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)

    Google Scholar 

  70. Pu, P., Faltings, B.: Decision Tradeoff Using Example Critiquing and Constraint Programming. Special Issue on User-Interaction in Constraint Satisfaction. CONSTRAINTS: an International Journal 9(4) (2004)

    Google Scholar 

  71. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  72. Quinlan, J.R.: Learning decision tree classifiers. ACM Comput. Surv. 28(1), 71–72 (1996), doi:10.1145/234313.234346

    Article  Google Scholar 

  73. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  74. Rafter, R., Bradley, K., Smyth, B.: Automatic Collaborative Filtering Applications for Online Recruitment Services. In: Brusilovsky, P., Stock, O., Strapparava, C. (eds.) AH 2000. LNCS, vol. 1892, pp. 363–368. Springer, Heidelberg (2000)

    Google Scholar 

  75. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic Critiquing. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 763–777. Springer, Heidelberg (2004)

    Google Scholar 

  76. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Explaining compound critiques. Artificial Intelligence Review (In Press)

    Google Scholar 

  77. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Conference on Computer Supported Collaborative Work, pp. 175–186 (1994)

    Google Scholar 

  78. Resnick, P., Varian, H.R.: Recommender Systems. CACM 40(3), 56–58 (1997)

    Google Scholar 

  79. Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D., Nones, M.: Product Recommendation with Interactive Query Management and Twofold Similarity. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 479–493. Springer, Heidelberg (2003)

    Google Scholar 

  80. Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: A Case-Based Travel Advisory System. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 613–627. Springer, Heidelberg (2002)

    Google Scholar 

  81. Ricci, F., Avesani, P.: Learning a Local Similarity Metric for Case-Based Reasoning. In: Aamodt, A., Veloso, M.M. (eds.) Case-Based Reasoning Research and Development. LNCS, vol. 1010, pp. 301–312. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  82. Roth-Berghofer, T.R.: Explanations and Case-Based Reasoning: Foundational Issues. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 389–403. Springer, Heidelberg (2004)

    Google Scholar 

  83. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

    Google Scholar 

  84. Schmitt, S.: simVar; A Similarity-Influenced Question Selection Criterion for e-Sales Dialogs. Artificial Intelligence Review 18(3–4), 195–221 (2002)

    Article  Google Scholar 

  85. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating ”Word of Mouth”. In: Proceedings of the Denver ACM CHI 1995, pp. 210–217. ACM Press, New York (1995)

    Google Scholar 

  86. Shimazu, H.: ExpertClerk: Navigating Shoppers’ Buying Process with the Combination of Asking and Proposing. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), Seattle, pp. 1443–1448. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  87. Shimazu, H., Shibata, A., Nihei, K.: ExpertGuide: A conversational case-based reasoning tool for developing mentors in knowledge spaces. Applied Intelligence 14(1), 33–48 (2002)

    Article  Google Scholar 

  88. Smyth, B., Bradley, K., Rafter, R.: Personalization techniques for online recruitment services. Commun. ACM 45(5), 39–40 (2002), doi:10.1145/506218.506241

    Article  Google Scholar 

  89. Smyth, B., Cotter, P.: Surfing the Digital Wave: Generating Personalized Television Guides Using Collaborative, Case-based Recommendation. In: Proceedings of the Third International Conference on Case-based Reasoning (1999)

    Google Scholar 

  90. Smyth, B., Cotter, P.: A Personalized TV Listings Service for the Digital TV Age. Journal of Knowledge-Based Systems 13(2-3), 53–59 (2000)

    Article  Google Scholar 

  91. Smyth, B., Keane, M.: Adaptation-Guided Retrieval: Questioning the Similarity Assumption in Reasoning. Artificial Intelligence 102, 249–293 (1998)

    Article  MATH  Google Scholar 

  92. Smyth, B., McClave, P.: Similarity v’s Diversity. In: Aha, D., Watson, I. (eds.) Proceedings of the 3rd International Conference on Case-Based Reasoning, pp. 347–361. Springer, Heidelberg (2001)

    Google Scholar 

  93. Smyth, B., McGinty, L.: The Power of Suggestion. In: Proceedings of the International Joint Conference on Artificial Intelligence. IJCAI-03, Acapulco, Mexico, pp. 127–132. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  94. Smyth, B., Cotter, P.: A personalized television listings service. Communications of the ACM 43(8), 107–111 (2000), doi:10.1145/345124.345161

    Article  Google Scholar 

  95. Sørmo, F., Cassens, J.: Explanation Goals in Case-Based Reasoning. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 165–174. Springer, Heidelberg (2004)

    Google Scholar 

  96. Stahl, A.: Learning Feature Weights from Case Order Feedback. In: Aha, D.W., Watson, I. (eds.) Proceedings of the 4th International Conference on Case-Based Reasoning, pp. 502–516 (2001)

    Google Scholar 

  97. Tecuci, G., Aha, D.W., Boicu, M., Cox, M., Ferguson, G., Tate, A.: Proceedings of the Workshop on Mixed-Initiative Intelligent Systems, Workshop Programme at the 18th International Joint Conference on Artificial Intelligence (2003), http://lalab.gmu.edu/miis/

  98. Thompson, C.A., Goker, M.H., Langley, P.: A Personalized System for Conversational recommendation. Journal of Artificial Intelligence Research 21, 1–36 (2004)

    Article  MathSciNet  Google Scholar 

  99. Veloso, M., Munoz-Avila, H., Bergmann, R.: Case-Based Planning: Methods and Systems. AI Communications 9(3), 128–137 (1996)

    Google Scholar 

  100. Vollrath, I., Wilke, W., Bergmann, R.: Case-Based Reasoning Support for Online Catalog Sales. IEEE Internet Computing 2(4), 45–54 (1998)

    Article  Google Scholar 

  101. Watson, I.: Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann, San Francisco (1997)

    MATH  Google Scholar 

  102. Wettschereck, D., Aha, D.W.: Weighting Features. In: Aamodt, A., Veloso, M.M. (eds.) Case-Based Reasoning Research and Development. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  103. Wilke, W., Lenz, M., Wess, S.: Intelligent Sales Support with CBR. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.) Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400, pp. 91–113. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Brusilovsky Alfred Kobsa Wolfgang Nejdl

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Smyth, B. (2007). Case-Based Recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds) The Adaptive Web. Lecture Notes in Computer Science, vol 4321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72079-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72078-2

  • Online ISBN: 978-3-540-72079-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics