Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Knowledge Based Discovery in Systems Biology Using CF-Induction

  • Conference paper
New Trends in Applied Artificial Intelligence (IEA/AIE 2007)

Abstract

The cell is an entity composed of several thousand types of interacting proteins. Our goal is to comprehend the biological system using only the revelent information which means that we will be able to reduce or to indicate the main metabolites necessary to measure. In this paper, it is shown how the Artificial Intelligence description method functioning on the basis of Inductive Logic Programming can be used successfully to describe essential aspects of cellular regulation. The results obtained shows that the ILP tool CF-induction discovers the activities of enzymes on glycolyse metabolic pathway when only partial information about it has been used. This procedure is based on the filtering of the high processes to reduce the space search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L.: Bagging predictors. Machine Learning 26, 123–140 (1996)

    Google Scholar 

  2. Chassagnole, C., Rodrigues, J.C., Doncescu, A., Yang, L.T.: Differential evolutionary algorithms for in vivo dynamic analysis of glycolysis and pentose phosphate pathway in Escherichia Coli. In: Zomaya, A. (ed.) Parallel Computing in Bioinformatics and Computational Biology, Jossey-Bass an imprint of Wiley Book. ISBN 0-471-71848, -3

    Google Scholar 

  3. Doncescu, A., Yamamoto, Y., Inoue, K.: Biological Systems Analysis using Inductive Logic Programming. In: The 2007 IEEE International Symposium on Bioinformatics and Life Science Computing BLSC07, Niagara Fall, Ontario, Canada (2007)

    Google Scholar 

  4. Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301–353 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Inoue, K.: Induction as consequence finding. Machine Learning 55, 109–135 (2004)

    Article  MATH  Google Scholar 

  6. Juvan, P., Demsar, J., Shaulsky, G., Zupan, B.: GenePath: from mutation to genetic networks and back. Nucleic Acids Research 33, 749–752 (2005)

    Article  Google Scholar 

  7. King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell, D., Oliver, S.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  8. Muggleton, S.: Inverse entailment and Progol. New Gen. Comput. 13, 245–862 (1995)

    Article  Google Scholar 

  9. Muggleton, S., Firth, J.: CProgol4.4: a tutorial introduction. Report of Department of Computer Science, University of York

    Google Scholar 

  10. Nabeshima, H., Iwanuma, K., Inoue, K.: SOLAR: a consequence finding system for advanced reasoning. In: Mayer, M.C., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 257–263. Springer, Heidelberg (2003)

    Google Scholar 

  11. Schugerl, K., Bellgardt, K.H. (eds.): Bioreaction Engineering: Modeling and Control. Springer, Heidelberg (2000)

    Google Scholar 

  12. Stephanopoulos, G., Aristidou, A., Nielsen, J.: Metabolic engineering. Academic Press, London (1998)

    Google Scholar 

  13. Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Muggleton, S.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 64, 209–230 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hiroshi G. Okuno Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Doncescu, A., Inoue, K., Yamamoto, Y. (2007). Knowledge Based Discovery in Systems Biology Using CF-Induction. In: Okuno, H.G., Ali, M. (eds) New Trends in Applied Artificial Intelligence. IEA/AIE 2007. Lecture Notes in Computer Science(), vol 4570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73325-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73325-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73322-5

  • Online ISBN: 978-3-540-73325-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics