Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Clique-Width and Parity Games

  • Conference paper
Computer Science Logic (CSL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4646))

Included in the following conference series:

  • 857 Accesses

Abstract

The question of the exact complexity of solving parity games is one of the major open problems in system verification, as it is equivalent to the problem of model-checking the modal μ-calculus. The known upper bound is NP∩co-NP, but no polynomial algorithm is known. It was shown that on tree-like graphs (of bounded tree-width and DAG-width) a polynomial-time algorithm does exist. Here we present a polynomial-time algorithm for parity games on graphs of bounded clique-width (class of graphs containing e.g. complete bipartite graphs and cliques), thus completing the picture. This also extends the tree-width result, as graphs of bounded tree-width are a subclass of graphs of bounded clique-width. The algorithm works in a different way to the tree-width case and relies heavily on an interesting structural property of parity games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Berwanger, D., Grädel, E.: Entanglement – a measure for the complexity of directed graphs with applications to logic and games. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg (2005)

    Google Scholar 

  3. Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 663–674. Springer, Heidelberg (2003)

    Google Scholar 

  4. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Volume B: Formal Models and Semantics, pp. 193–242. Elsevier, Amsterdam (1990)

    Google Scholar 

  5. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1-3), 77–114 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proc. 5th IEEE Foundations of Computer Science, pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  8. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. In: LICS 2002, pp. 215–224. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  10. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Information Processing Letters 68(3), 119–124 (1998)

    Article  MathSciNet  Google Scholar 

  11. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 117–123. ACM Press, New York (2006)

    Chapter  Google Scholar 

  13. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mostowski, A.W.: Games with forbidden positions. Technical Report 78, Instytut Matematyki, Uniwersytet Gdański, Poland (1991)

    Google Scholar 

  15. Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer, Heidelberg (2003)

    Google Scholar 

  16. Obdržálek, J.: Algorithmic Analysis of Parity Games. PhD thesis, University of Edinburgh (2006)

    Google Scholar 

  17. Obdržálek, J.: DAG-width – connectivity measure for directed graphs. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 814–821. ACM Press, New York (2006)

    Chapter  Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph Minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B 36, 49–63 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Duparc Thomas A. Henzinger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Obdržálek, J. (2007). Clique-Width and Parity Games. In: Duparc, J., Henzinger, T.A. (eds) Computer Science Logic. CSL 2007. Lecture Notes in Computer Science, vol 4646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74915-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74915-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74914-1

  • Online ISBN: 978-3-540-74915-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics