Abstract
The question of the exact complexity of solving parity games is one of the major open problems in system verification, as it is equivalent to the problem of model-checking the modal μ-calculus. The known upper bound is NP∩co-NP, but no polynomial algorithm is known. It was shown that on tree-like graphs (of bounded tree-width and DAG-width) a polynomial-time algorithm does exist. Here we present a polynomial-time algorithm for parity games on graphs of bounded clique-width (class of graphs containing e.g. complete bipartite graphs and cliques), thus completing the picture. This also extends the tree-width result, as graphs of bounded tree-width are a subclass of graphs of bounded clique-width. The algorithm works in a different way to the tree-width case and relies heavily on an interesting structural property of parity games.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)
Berwanger, D., Grädel, E.: Entanglement – a measure for the complexity of directed graphs with applications to logic and games. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg (2005)
Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 663–674. Springer, Heidelberg (2003)
Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Volume B: Formal Models and Semantics, pp. 193–242. Elsevier, Amsterdam (1990)
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)
Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1-3), 77–114 (2000)
Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proc. 5th IEEE Foundations of Computer Science, pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)
Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. In: LICS 2002, pp. 215–224. IEEE Computer Society Press, Los Alamitos (2002)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Information Processing Letters 68(3), 119–124 (1998)
Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)
Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 117–123. ACM Press, New York (2006)
Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 333–354 (1983)
Mostowski, A.W.: Games with forbidden positions. Technical Report 78, Instytut Matematyki, Uniwersytet Gdański, Poland (1991)
Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer, Heidelberg (2003)
Obdržálek, J.: Algorithmic Analysis of Parity Games. PhD thesis, University of Edinburgh (2006)
Obdržálek, J.: DAG-width – connectivity measure for directed graphs. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 814–821. ACM Press, New York (2006)
Robertson, N., Seymour, P.D.: Graph Minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B 36, 49–63 (1984)
Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Obdržálek, J. (2007). Clique-Width and Parity Games. In: Duparc, J., Henzinger, T.A. (eds) Computer Science Logic. CSL 2007. Lecture Notes in Computer Science, vol 4646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74915-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-74915-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74914-1
Online ISBN: 978-3-540-74915-8
eBook Packages: Computer ScienceComputer Science (R0)