During the last decade, data miners became aware of geographical data. Today, knowledge discovery from geographic data is still an open research field but promises to be a solid starting point for developing solutions for mining spatiotemporal patterns in a knowledge-rich territory. As many concepts of geographic feature extraction and data mining are not commonly known within the data mining community, but need to be understood before advancing to spatiotemporal data mining, this chapter provides an introduction to basic concepts of knowledge discovery from geographical data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proceedings of 20th International Conference on Very Large Data Bases (VLDB’94), pp. 487–499. Morgan Kaufmann, 1994.
G. Andrienko, D. Malerba, M. May, and M. Teisseire. Mining spatio-temporal data. Journal of Intelligent Information Systems, 27(3):187–190, 2006.
A. Appice, M. Berardi, M. Ceci, and D. Malerba. Mining and filtering multi-level spatial association rules with ARES. In Proceedings of the 15th International Symposium on the Foundations of Intelligent Systems (ISMIS’05), pp. 342–353. Springer, 2005.
V. Bogorny, S. Camargo, P. Engel, and L.O. Alvares. Mining frequent geographic patterns with knowledge constraints. In Proceedings of the 14th Annual International Workshop on Geographic Information Systems (GIS’06), pp. 139–146. ACM, 2006.
V. Bogorny, P. Engel, and L.O. Alvares. Enhancing the process of knowledge discovery in geographic databases using geo-ontologies. In H.O. Nigro, S.G. Cizaro, and D. Xodo (eds.), Data Mining with Ontologies: Implementations, Findings and Frameworks. Idea Group, 2007.
V. Bogorny, J. Valiati, S. Camargo, P. Engel, B. Kuijpers, and L.O. Alvares. Mining maximal generalized frequent geographic patterns with knowledge constraints. In Proceedings of the 6th International Conference on Data Mining (ICDM’06), pp. 813–817. IEEE Computer Society, 2006.
P.A. Burrough and R.A. McDonnell. Principles of Geographical Information Systems. Oxford University Press, 2000.
S. Chawla, S. Shekhar, W. Wu, and U. Ozesmi. Modelling spatial dependencies for mining geospatial data. In H.J. Miller and J. Han (eds.), Geographic Data Mining and Knowledge Discovery, Chap. 6. Taylor & Francis, 2001.
J.-P. Chilés and P. Delfiner. Geostatistics – Modeling Spatial Uncertainty. Wiley, 1999.
D.J. Cowen. GIS versus CAD versus DBMS: what are the differences? Journal of Photogrammetric Engineering and Remote Sensing, 54:1551–1555, 1988.
N.A.C. Cressie. Statistics for Spatial Data. Wiley, 1993.
M. Egenhofer. Reasoning about binary topological relations. In Proceedings of the 2nd International Symposium on Advances in Spatial Databases (SSD’91), pp. 143–160. Springer, 1991.
M. Ester, J. Sander, H.-P. Kriegel, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96), pp. 226–231. AAAI Press, 1996.
M. Ester, A. Frommelt, H.-P. Kriegel, and J. Sander. Spatial data mining: database primitives, algorithms and efficient DBMS support. Journal of Data Mining and Knowledge Discovery, 4(2–3):193–216, 2000.
A.S. Fotheringham and P.A. Rogerson. GIS and spatial analytical problems. International Journal of Geographical Information Systems, 7(1):3–19, 1993.
A.S. Fotheringham, C. Brunsdon, and M. Charlton. Geographically Weighted Regression. Wiley, 2002.
A.U. Frank. Qualitative spatial reasoning: cardinal directions as an example. International Journal of Geographical Information Systems, 10(3):269–290, 1996.
Fraunhofer Institut Intelligente Analyse- und Informationssysteme (IAIS). http://www.iais.fraunhofer.de, 2007.
R. Haining. Spatial Data Analysis: Theory and Practice. Cambridge University Press, 2003.
J. Han, K. Koperski, and N. Stefanovic. GeoMiner: a system prototype for spatial data mining. In Proceedings of the International Conference on Management of Data (SIGMOD’97), pp. 553–556. ACM, 1997.
D.A. Hastings. Geographic Information Systems: A Tool for Geoscience Analysis and Interpretation. 1992.
Y. Huang, S. Shekhar, and H. Xiong. Discovering colocation patterns from spatial data sets: a general approach. IEEE Transactions on Knowledge and Data Engineering, 16(12):1472–1485, 2004.
W. Klösgen. Subgroup discovery. In W. Klösgen and J. Zytkow (eds.), Handbook of Data Mining and Knowledge Discovery, Chap. 16.3. Oxford University Press, 2002.
W. Klösgen and M. May. Spatial subgroup mining integrated in an object-relational spatial database. In Proceedings of the 6th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’02), pp. 275–286. Springer, 2002.
K. Koperski and J. Han. Discovery of spatial association rules in geographic information databases. In Proceedings of the 4th International Symposium on Advances in Spatial Databases (SSD’95), pp. 47–66. Springer, 1995.
R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems. Vol. 37. APIC Series. Academic Press, 1992.
P.A. Longley, M.F. Goodchild, D.J. Maguire, and D.W. Rhind. Geographic Information Systems and Science, Chap. 3. Wiley, 2001.
D. Malerba and F.A. Lisi. An ILP method for spatial association rule mining. In Proceedings of Workshop on Multi-Relational Data Mining (MRDM’01), pp. 18–29, 2001.
D. Malerba, F. Esposito, A. Lanza, F.A. Lisi, and A. Appice. Empowering a GIS with inductive learning capabilities: the case of INGENS. Journal of Computers, Environment and Urban Systems, 27(3):265–281, 2003.
D. Malerba, M. Ceci, and A. Appice. Mining model trees from spatial data. In Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’05), pp. 169–180. Springer, 2005.
M. May. Data mining cup, presentation, 2006. http://www.data-mining-cup.de/2006/Fachkonferenz/Programm/.
M. May and S. Savinov. SPIN! – an enterprise architecture for spatial data mining. In Proceedings of the 7th International Conference on Knowledge-Based Intelligent Information & Engineering Systems (KES’03), pp. 510–517. Springer, 2003.
H.J. Miller. Geographic data mining and knowledge discovery. In J.P. Wilson and A.S. Fotheringham (eds.), Handbook of Geographic Information Science. Blackwell, 2006.
Open GIS Consortium. OpenGIS abstract specification, 1999. http://www.opengeospatial.org/standards/as.
T. Ott and F. Swiaczny. Time-integrative Geographic Information Systems – Management and Analysis of Spatio-Temporal Data. Springer, 2001.
D. Papadias and Y. Theodoridis. Spatial relations, minimum bounding rectangles, and spatial data structures. International Journal of Geographical Information Science, 11(2):111–138, 1997.
P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases. With Application to GIS. Morgan Kaufmann, 2001.
S. Rinzivillo and F. Turini. Extracting spatial association rules from spatial transactions. In Proceedings of the 13th Annual International Workshop on Geographic Information Systems (GIS’05), pp. 79–86. ACM, 2005.
J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Journal of Data Mining and Knowledge Discovery, 2(2):169–196, 1998.
S. Servigne, T. Ubeda, A. Puricelli, and R. Laurini. A methodology for spatial consistency improvement of geographic databases. Geoinformatica, 4(1):7–34, 2000.
S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall, 2002.
SPIN! Spatial mining for public data of interest, 2007. http://www.ais.fraunhofer.de/KD/SPIN/.
W. Tobler. A computer movie simulating urban growth in the Detroit region. Journal of Economic Geography, 46(2):234–240, 1970.
H. Wackernagel. Multivariate Geostatistics. Springer, 1998.
Y. Wang and I. Witten. Inducing model trees for continuous classes. In Proceedings of the 9th European Conference on Machine Learning (ECML’97), Poster Papers, pp. 128–137, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Rinzivillo, S., Turini, F., Bogorny, V., Körner, C., Kuijpers, B., May, M. (2008). Knowledge Discovery from Geographical Data. In: Giannotti, F., Pedreschi, D. (eds) Mobility, Data Mining and Privacy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75177-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-75177-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75176-2
Online ISBN: 978-3-540-75177-9
eBook Packages: Computer ScienceComputer Science (R0)