Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Knowledge Discovery from Geographical Data

  • Chapter
Mobility, Data Mining and Privacy
  • 1913 Accesses

During the last decade, data miners became aware of geographical data. Today, knowledge discovery from geographic data is still an open research field but promises to be a solid starting point for developing solutions for mining spatiotemporal patterns in a knowledge-rich territory. As many concepts of geographic feature extraction and data mining are not commonly known within the data mining community, but need to be understood before advancing to spatiotemporal data mining, this chapter provides an introduction to basic concepts of knowledge discovery from geographical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proceedings of 20th International Conference on Very Large Data Bases (VLDB’94), pp. 487–499. Morgan Kaufmann, 1994.

    Google Scholar 

  2. G. Andrienko, D. Malerba, M. May, and M. Teisseire. Mining spatio-temporal data. Journal of Intelligent Information Systems, 27(3):187–190, 2006.

    Article  Google Scholar 

  3. A. Appice, M. Berardi, M. Ceci, and D. Malerba. Mining and filtering multi-level spatial association rules with ARES. In Proceedings of the 15th International Symposium on the Foundations of Intelligent Systems (ISMIS’05), pp. 342–353. Springer, 2005.

    Google Scholar 

  4. V. Bogorny, S. Camargo, P. Engel, and L.O. Alvares. Mining frequent geographic patterns with knowledge constraints. In Proceedings of the 14th Annual International Workshop on Geographic Information Systems (GIS’06), pp. 139–146. ACM, 2006.

    Google Scholar 

  5. V. Bogorny, P. Engel, and L.O. Alvares. Enhancing the process of knowledge discovery in geographic databases using geo-ontologies. In H.O. Nigro, S.G. Cizaro, and D. Xodo (eds.), Data Mining with Ontologies: Implementations, Findings and Frameworks. Idea Group, 2007.

    Google Scholar 

  6. V. Bogorny, J. Valiati, S. Camargo, P. Engel, B. Kuijpers, and L.O. Alvares. Mining maximal generalized frequent geographic patterns with knowledge constraints. In Proceedings of the 6th International Conference on Data Mining (ICDM’06), pp. 813–817. IEEE Computer Society, 2006.

    Google Scholar 

  7. P.A. Burrough and R.A. McDonnell. Principles of Geographical Information Systems. Oxford University Press, 2000.

    Google Scholar 

  8. S. Chawla, S. Shekhar, W. Wu, and U. Ozesmi. Modelling spatial dependencies for mining geospatial data. In H.J. Miller and J. Han (eds.), Geographic Data Mining and Knowledge Discovery, Chap. 6. Taylor & Francis, 2001.

    Google Scholar 

  9. J.-P. Chilés and P. Delfiner. Geostatistics – Modeling Spatial Uncertainty. Wiley, 1999.

    Google Scholar 

  10. D.J. Cowen. GIS versus CAD versus DBMS: what are the differences? Journal of Photogrammetric Engineering and Remote Sensing, 54:1551–1555, 1988.

    Google Scholar 

  11. N.A.C. Cressie. Statistics for Spatial Data. Wiley, 1993.

    Google Scholar 

  12. M. Egenhofer. Reasoning about binary topological relations. In Proceedings of the 2nd International Symposium on Advances in Spatial Databases (SSD’91), pp. 143–160. Springer, 1991.

    Google Scholar 

  13. M. Ester, J. Sander, H.-P. Kriegel, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96), pp. 226–231. AAAI Press, 1996.

    Google Scholar 

  14. M. Ester, A. Frommelt, H.-P. Kriegel, and J. Sander. Spatial data mining: database primitives, algorithms and efficient DBMS support. Journal of Data Mining and Knowledge Discovery, 4(2–3):193–216, 2000.

    Article  Google Scholar 

  15. A.S. Fotheringham and P.A. Rogerson. GIS and spatial analytical problems. International Journal of Geographical Information Systems, 7(1):3–19, 1993.

    Article  Google Scholar 

  16. A.S. Fotheringham, C. Brunsdon, and M. Charlton. Geographically Weighted Regression. Wiley, 2002.

    Google Scholar 

  17. A.U. Frank. Qualitative spatial reasoning: cardinal directions as an example. International Journal of Geographical Information Systems, 10(3):269–290, 1996.

    Google Scholar 

  18. Fraunhofer Institut Intelligente Analyse- und Informationssysteme (IAIS). http://www.iais.fraunhofer.de, 2007.

  19. R. Haining. Spatial Data Analysis: Theory and Practice. Cambridge University Press, 2003.

    Google Scholar 

  20. J. Han, K. Koperski, and N. Stefanovic. GeoMiner: a system prototype for spatial data mining. In Proceedings of the International Conference on Management of Data (SIGMOD’97), pp. 553–556. ACM, 1997.

    Google Scholar 

  21. D.A. Hastings. Geographic Information Systems: A Tool for Geoscience Analysis and Interpretation. 1992.

    Google Scholar 

  22. Y. Huang, S. Shekhar, and H. Xiong. Discovering colocation patterns from spatial data sets: a general approach. IEEE Transactions on Knowledge and Data Engineering, 16(12):1472–1485, 2004.

    Article  Google Scholar 

  23. W. Klösgen. Subgroup discovery. In W. Klösgen and J. Zytkow (eds.), Handbook of Data Mining and Knowledge Discovery, Chap. 16.3. Oxford University Press, 2002.

    Google Scholar 

  24. W. Klösgen and M. May. Spatial subgroup mining integrated in an object-relational spatial database. In Proceedings of the 6th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’02), pp. 275–286. Springer, 2002.

    Google Scholar 

  25. K. Koperski and J. Han. Discovery of spatial association rules in geographic information databases. In Proceedings of the 4th International Symposium on Advances in Spatial Databases (SSD’95), pp. 47–66. Springer, 1995.

    Google Scholar 

  26. R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems. Vol. 37. APIC Series. Academic Press, 1992.

    Google Scholar 

  27. P.A. Longley, M.F. Goodchild, D.J. Maguire, and D.W. Rhind. Geographic Information Systems and Science, Chap.  3. Wiley, 2001.

    Google Scholar 

  28. D. Malerba and F.A. Lisi. An ILP method for spatial association rule mining. In Proceedings of Workshop on Multi-Relational Data Mining (MRDM’01), pp. 18–29, 2001.

    Google Scholar 

  29. D. Malerba, F. Esposito, A. Lanza, F.A. Lisi, and A. Appice. Empowering a GIS with inductive learning capabilities: the case of INGENS. Journal of Computers, Environment and Urban Systems, 27(3):265–281, 2003.

    Article  Google Scholar 

  30. D. Malerba, M. Ceci, and A. Appice. Mining model trees from spatial data. In Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’05), pp. 169–180. Springer, 2005.

    Google Scholar 

  31. M. May. Data mining cup, presentation, 2006. http://www.data-mining-cup.de/2006/Fachkonferenz/Programm/.

  32. M. May and S. Savinov. SPIN! – an enterprise architecture for spatial data mining. In Proceedings of the 7th International Conference on Knowledge-Based Intelligent Information & Engineering Systems (KES’03), pp. 510–517. Springer, 2003.

    Google Scholar 

  33. H.J. Miller. Geographic data mining and knowledge discovery. In J.P. Wilson and A.S. Fotheringham (eds.), Handbook of Geographic Information Science. Blackwell, 2006.

    Google Scholar 

  34. Open GIS Consortium. OpenGIS abstract specification, 1999. http://www.opengeospatial.org/standards/as.

  35. T. Ott and F. Swiaczny. Time-integrative Geographic Information Systems – Management and Analysis of Spatio-Temporal Data. Springer, 2001.

    Google Scholar 

  36. D. Papadias and Y. Theodoridis. Spatial relations, minimum bounding rectangles, and spatial data structures. International Journal of Geographical Information Science, 11(2):111–138, 1997.

    Article  Google Scholar 

  37. P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases. With Application to GIS. Morgan Kaufmann, 2001.

    Google Scholar 

  38. S. Rinzivillo and F. Turini. Extracting spatial association rules from spatial transactions. In Proceedings of the 13th Annual International Workshop on Geographic Information Systems (GIS’05), pp. 79–86. ACM, 2005.

    Google Scholar 

  39. J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Journal of Data Mining and Knowledge Discovery, 2(2):169–196, 1998.

    Article  Google Scholar 

  40. S. Servigne, T. Ubeda, A. Puricelli, and R. Laurini. A methodology for spatial consistency improvement of geographic databases. Geoinformatica, 4(1):7–34, 2000.

    Article  MATH  Google Scholar 

  41. S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall, 2002.

    Google Scholar 

  42. SPIN! Spatial mining for public data of interest, 2007. http://www.ais.fraunhofer.de/KD/SPIN/.

  43. W. Tobler. A computer movie simulating urban growth in the Detroit region. Journal of Economic Geography, 46(2):234–240, 1970.

    Google Scholar 

  44. H. Wackernagel. Multivariate Geostatistics. Springer, 1998.

    Google Scholar 

  45. Y. Wang and I. Witten. Inducing model trees for continuous classes. In Proceedings of the 9th European Conference on Machine Learning (ECML’97), Poster Papers, pp. 128–137, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rinzivillo, S., Turini, F., Bogorny, V., Körner, C., Kuijpers, B., May, M. (2008). Knowledge Discovery from Geographical Data. In: Giannotti, F., Pedreschi, D. (eds) Mobility, Data Mining and Privacy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75177-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75177-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75176-2

  • Online ISBN: 978-3-540-75177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics