Abstract
Extensive use of computer networks and online electronic data and high demand for security has called for reliable intrusion detection systems. A repertoire of different classifiers has been proposed for this problem over last decade. In this paper we propose a combining classification approach for intrusion detection. Outputs of four base classifiers ANN, SVM, kNN and decision trees are fused using three combination strategies: majority voting, Bayesian averaging and a belief measure. Our results support the superiority of the proposed approach compared with single classifiers for the problem of intrusion detection.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings of the 13th Conference on Systems Administration (LISA 1999), pp. 229–238 (1999)
Zhang, C., Jiang, J., Kamel, M.: Intrusion detection using hierarchical neural networks. Pattern Analysis and Machine Intelligence Research Group, Department of Electrical and Computer Engineering, University of Waterloo, Canada (2004)
Wun-Hua, C., Sheng-Hsun, H., Hwang-Pin, S.: Application of SVM and ANN for intrusion detection. Comput. Oper. Res. 32(10), 2617–2634 (2005)
Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study of anomaly detection schemes in network intrusion detection. In: Proceedings of the Third SIAM Conference on Data Mining (2003)
Pavel, L., Patrick, D., Christin, S., Rieck, K.: Learning Intrusion Detection: Supervised or Unsupervised. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 50–57. Springer, Heidelberg (2005)
Gómez, J., González, F., Dasgupta, D.: An immuno-fuzzy approach to anomaly detection. Fuzzy Systems. In: FUZZ 2003. 12th IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1219–1224 (2003)
Yao, J., Zhao, S., Saxton, L.: A study on fuzzy intrusion detection. Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005. In: Dasarathy, B.V.(ed.) Proceedings of the SPIE, vol. 5812, pp.23–30 (2005)
Oja.: Principal components, minor components, and linear neural networks. Neural Networks 5(6), 927–935 (1972)
Kuchimanchi, G.K., Phoha, V.V., Balagami, K.S., Gaddam, S.R.: Dimension reduction using feature extraction methods for Real-time misuse detection systems. In: Proceedings of the 2004 IEEE Workshop on Information Assurance and Security, West Point, NY, pp. 195–202 (2004)
Labib, K., Vemuri, V.R.: Detecting and visualizing denial-of-service and network probe attacks using principal component analysis. In: Third Conference on Security and Network Architectures, La Londe, France (2004)
Mukkamala, S., Sung, A.H., Abraham, A.: Intrusion Detection Using Ensemble of Soft Computing Paradigms. Journal of Network and Computer Applications 28, 167–182 (2005)
Didaci, L., Giacinto, G., Roli, F.: Ensemble Learning for Intrusion Detection in Computer Networks. In: Workshop su apprendimento automatico: metodi ed applicazioni (2006)
Xu, L., Krzyzak, A., Suen, C.Y.: Methods for combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Systems, Man and Cybernetics 22, 418–435 (1992)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borji, A. (2007). Combining Heterogeneous Classifiers for Network Intrusion Detection. In: Cervesato, I. (eds) Advances in Computer Science – ASIAN 2007. Computer and Network Security. ASIAN 2007. Lecture Notes in Computer Science, vol 4846. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76929-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-76929-3_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76927-9
Online ISBN: 978-3-540-76929-3
eBook Packages: Computer ScienceComputer Science (R0)