Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining Heterogeneous Classifiers for Network Intrusion Detection

  • Conference paper
Advances in Computer Science – ASIAN 2007. Computer and Network Security (ASIAN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4846))

Included in the following conference series:

Abstract

Extensive use of computer networks and online electronic data and high demand for security has called for reliable intrusion detection systems. A repertoire of different classifiers has been proposed for this problem over last decade. In this paper we propose a combining classification approach for intrusion detection. Outputs of four base classifiers ANN, SVM, kNN and decision trees are fused using three combination strategies: majority voting, Bayesian averaging and a belief measure. Our results support the superiority of the proposed approach compared with single classifiers for the problem of intrusion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings of the 13th Conference on Systems Administration (LISA 1999), pp. 229–238 (1999)

    Google Scholar 

  2. Zhang, C., Jiang, J., Kamel, M.: Intrusion detection using hierarchical neural networks. Pattern Analysis and Machine Intelligence Research Group, Department of Electrical and Computer Engineering, University of Waterloo, Canada (2004)

    Google Scholar 

  3. Wun-Hua, C., Sheng-Hsun, H., Hwang-Pin, S.: Application of SVM and ANN for intrusion detection. Comput. Oper. Res. 32(10), 2617–2634 (2005)

    Article  Google Scholar 

  4. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study of anomaly detection schemes in network intrusion detection. In: Proceedings of the Third SIAM Conference on Data Mining (2003)

    Google Scholar 

  5. Pavel, L., Patrick, D., Christin, S., Rieck, K.: Learning Intrusion Detection: Supervised or Unsupervised. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 50–57. Springer, Heidelberg (2005)

    Google Scholar 

  6. Gómez, J., González, F., Dasgupta, D.: An immuno-fuzzy approach to anomaly detection. Fuzzy Systems. In: FUZZ 2003. 12th IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1219–1224 (2003)

    Google Scholar 

  7. Yao, J., Zhao, S., Saxton, L.: A study on fuzzy intrusion detection. Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005. In: Dasarathy, B.V.(ed.) Proceedings of the SPIE, vol. 5812, pp.23–30 (2005)

    Google Scholar 

  8. Oja.: Principal components, minor components, and linear neural networks. Neural Networks 5(6), 927–935 (1972)

    Article  Google Scholar 

  9. Kuchimanchi, G.K., Phoha, V.V., Balagami, K.S., Gaddam, S.R.: Dimension reduction using feature extraction methods for Real-time misuse detection systems. In: Proceedings of the 2004 IEEE Workshop on Information Assurance and Security, West Point, NY, pp. 195–202 (2004)

    Google Scholar 

  10. Labib, K., Vemuri, V.R.: Detecting and visualizing denial-of-service and network probe attacks using principal component analysis. In: Third Conference on Security and Network Architectures, La Londe, France (2004)

    Google Scholar 

  11. Mukkamala, S., Sung, A.H., Abraham, A.: Intrusion Detection Using Ensemble of Soft Computing Paradigms. Journal of Network and Computer Applications 28, 167–182 (2005)

    Article  Google Scholar 

  12. Didaci, L., Giacinto, G., Roli, F.: Ensemble Learning for Intrusion Detection in Computer Networks. In: Workshop su apprendimento automatico: metodi ed applicazioni (2006)

    Google Scholar 

  13. Xu, L., Krzyzak, A., Suen, C.Y.: Methods for combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Systems, Man and Cybernetics 22, 418–435 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Iliano Cervesato

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borji, A. (2007). Combining Heterogeneous Classifiers for Network Intrusion Detection. In: Cervesato, I. (eds) Advances in Computer Science – ASIAN 2007. Computer and Network Security. ASIAN 2007. Lecture Notes in Computer Science, vol 4846. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76929-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76929-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76927-9

  • Online ISBN: 978-3-540-76929-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics