Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology

  • Conference paper
Computational Methods in Systems Biology (CMSB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5307))

Included in the following conference series:

Abstract

Finding mathematical models satisfying a specification built from the formalization of biological experiments, is a common task of the modeller that techniques like model-checking help solving, in the qualitative but also in the quantitative case. In this article we propose to go one step further by defining a continuous degree of satisfaction of a temporal logic formula with constraints. We show how such a satisfaction measure can be used as a fitness function with state-of-the-art search methods in order to find biochemical kinetic parameter values satisfying a set of biological properties formalized in temporal logic. We also show how it can be used to define a measure of robustness of a biological model with respect to some specification. These methods are evaluated on models of the cell cycle and of the MAPK signalling cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Sematics, vol. B, pp. 995–1072. MIT Press, Cambridge (1990)

    Google Scholar 

  2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)

    Google Scholar 

  4. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical interaction networks. Theoretical Computer Science 325, 25–44 (2004)

    Article  Google Scholar 

  6. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A fruitful application of formal methods to biological regulatory networks: Extending thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229, 339–347 (2004)

    Article  PubMed  Google Scholar 

  7. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the continuous time markow chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006) (CMSB 2005 Special Issue)

    Chapter  Google Scholar 

  8. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006) (CMSB 2005 Special Issue)

    Chapter  Google Scholar 

  10. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics 21, i19–i28 (2005)

    Article  Google Scholar 

  12. Fages, F.: Temporal logic constraints in the biochemical abstract machine BIOCHAM (invited talk). In: Hill, P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 1–5. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fages, F., Rizk, A.: On temporal logic constraint solving for the analysis of numerical data time series. Theoretical Computer Science (2008) (CMSB 2007 special issue)

    Google Scholar 

  15. Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23, 2415–2422 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Segel, L.A.: Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  17. Szallasi, Z., Stelling, J., Periwal, V. (eds.): System Modeling in Cellular Biology: From Concepts to Nuts and Bolts. MIT Press, Cambridge (2006)

    Google Scholar 

  18. Hucka, M., et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4, 64–73 (2004)

    Article  CAS  Google Scholar 

  20. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: An environment for modeling biological systems and formalizing experimental knowledge. BioInformatics 22, 1805–1807 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation of gene regulatory network. In: Proceedings of the 5th Pacific Symposium on Biocomputing, pp. 338–349 (2000)

    Google Scholar 

  23. Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)

    Article  Google Scholar 

  24. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. Transactions on Computational Systems Biology, Special issue of BioConcur 2004 (to appear, 2004)

    Google Scholar 

  25. Nickovic, D., Maler, O.: Amt: a property-based monitoring tool for analog systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Kitano, H.: Towards a theory of biological robustness. Molecular Systems Biology 3, 137 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9, 159–195 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Chen, K.C., Csikász-Nagy, A., Györffy, B., Val, J., Novàk, B., Tyson, J.J.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Molecular Biology of the Cell 11, 369–391 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. PNAS 97, 5818–5823 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiao, L., Nachbar, R.B., Kevrekidis, I.G., Shvartsman, S.Y.: Bistability and oscillations in the huang-ferrell model of mapk signaling. PLoS Computational Biology 3, 1819–1826 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. Fages, F., Soliman, S.: From reaction models to influence graphs and back: a theorem. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Ventura, A.C., Sepulchre, J.A., Merajver, S.D.: A hidden feedback in signaling cascades is revealed. PLoS Computational Biology (to appear, 2008)

    Google Scholar 

  33. Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. SIGMETRICS Performance Evaluation Review 35, 14–21 (2008)

    Article  Google Scholar 

  34. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quantitative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  35. Fainekos, G., Pappas, G.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  36. Fainekos, G., Pappas, G.: Robust sampling for MITL specifications. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 147–162. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  37. Dang, T., Donze, A., Maler, O., Shalev, N.: Sensitive state space exploration (submitted, 2008), http://www-verimag.imag.fr/~maler/

  38. Chaves, M., Sontag, E., Sengupta, A.: Shape, size and robustness: feasible regions in the parameter space of biochemical networks (submitted, 2008) arXiv:0710.4269v1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rizk, A., Batt, G., Fages, F., Soliman, S. (2008). On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology. In: Heiner, M., Uhrmacher, A.M. (eds) Computational Methods in Systems Biology. CMSB 2008. Lecture Notes in Computer Science(), vol 5307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88562-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88562-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88561-0

  • Online ISBN: 978-3-540-88562-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics