Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Efficiency of Local Search Methods for the Molecular Docking Problem

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2009)

Abstract

Evolutionary approaches to molecular docking typically hybridize with local search methods, more specifically, the Solis-Wet method. However, some studies indicated that local search methods might not be very helpful in the context of molecular docking. An evolutionary algorithm with proper genetic operators can perform equally well or even outperform hybrid evolutionary approaches. We show that this is dependent on the type of local search method. We also propose an evolutionary algorithm which uses the L-BFGS method as local search. Results demonstrate that this hybrid evolutionary outperforms previous approaches and is better suited to serve as a basis for evolutionary docking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Review 39, 407–460 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Thomsen, R.: Protein-ligand docking with evolutionary algorithms. In: Fogel, G.B., Corne, D.W., Pan, Y. (eds.) Computational Intelligence in Bioinformatics, pp. 169–195. Wiley-IEEE Press (2008)

    Google Scholar 

  3. Thomsen, R.: Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72, 57–73 (2003)

    Article  Google Scholar 

  4. Tavares, J., Tantar, A.A., Melab, N., Talbi, E.G.: The influence of mutation on protein-ligand docking optimization: a locality analysis. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199. Springer, Heidelberg (2008)

    Google Scholar 

  5. Tavares, J., Melab, N., Talbi, E.G.: An empirical study on the influence of genetic operators for molecular docking optimization. Technical Report RR-6660, INRIA Lille - Nord Europe research Centre (2008)

    Google Scholar 

  6. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. Journal of Computational Chemistry 19, 1639–1662 (1998)

    Article  Google Scholar 

  7. Dixon, J.S.: Flexible docking of ligands to receptor sites using genetic algorithms. In: Proc. of the 9th European Symposium on Structure-Activity Relationships, Leiden, The Netherlands, pp. 412–413. ESCOM Science Publishers (1993)

    Google Scholar 

  8. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil, C.: Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. British Journal of Pharmacology 153, 1–20 (2007)

    Google Scholar 

  9. Liu, D.C., Nocedal, J.: On the limited memory method for large scale optimization. Mathematical Programming B, 503–528 (1989)

    Google Scholar 

  10. Tavares, J., Tantar, A.A., Melab, N., Talbi, E.G.: The impact of local search on protein-ligand docking optimization. In: Proceedings of the 8th International Conference on Hybrid Intelligent Systems (2008)

    Google Scholar 

  11. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tavares, J., Mesmoudi, S., Talbi, EG. (2009). On the Efficiency of Local Search Methods for the Molecular Docking Problem. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2009. Lecture Notes in Computer Science, vol 5483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01184-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01184-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01183-2

  • Online ISBN: 978-3-642-01184-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics