Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Diversity in Combinations of Heterogeneous Classifiers

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5476))

Included in the following conference series:

Abstract

In this paper, we introduce the use of combinations of heterogeneous classifiers to achieve better diversity. Conducting theoretical and empirical analyses of the diversity of combinations of heterogeneous classifiers, we study the relationship between heterogeneity and diversity. On the one hand, the theoretical analysis serves as a foundation for employing heterogeneous classifiers in Multi-Classifier Systems or ensembles. On the other hand, experimental results provide empirical evidence. We consider synthetic as well as real data sets, utilize classification algorithms that are essentially different, and employ various popular diversity measures for evaluation. Two interesting observations will contribute to the future design of Multi-Classifier Systems and ensemble techniques. First, the diversity among heterogeneous classifiers is higher than that among homogeneous ones, and hence using heterogeneous classifiers to construct classifier combinations would increase the diversity. Second, the heterogeneity primarily results from different classification algorithms rather than the same algorithm with different parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)

    MATH  Google Scholar 

  2. Alkoot, F.M., Kittler, J.: Multiple expert system design by combined feature selection and probability level fusion. In: Proc. of the 3rd International Conference on Information Fusion, vol. 2, pp. THC5/9–THC516 (2000)

    Google Scholar 

  3. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  4. Bahler, D., Navarro, L.: Methods for Combining Heterogeneous Sets of Classifiers. In: The 17th National Conference on Artificial Intelligence, Workshop on New Research Problems for Machine Learning (2000)

    Google Scholar 

  5. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A New Ensemble Diversity Measure Applied to Thinning Ensembles. In: International Workshop on Multiple Classifier Systems, pp. 306–316 (2003)

    Google Scholar 

  6. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  7. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorization. Information Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  9. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proc. of the 13th International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  11. Ghosh, J.: Multiclassifier Systems: Back to the Future. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 1–15. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Hettich, S., Bay, S.D.: The UCI KDD Archive. University of California, Department of Information and Computer Science, Irvine, CA (1999), http://kdd.ics.uci.edu

  13. John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: The 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  14. Kuncheva, L.I., Whitaker, C.J.: Ten measures of diversity in classifier ensembles: limits for two classifiers. In: A DERA/IEE Workshop on Intelligent Sensor Processing, pp. 10/1–10/10 (2001)

    Google Scholar 

  15. Kuncheva, L.I., Skurichina, M., Duin, R.P.W.: An experimental study on diversity for bagging and boosting with linear classifiers. Information Fusion 3(4), 245–258 (2002)

    Article  Google Scholar 

  16. Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning 51(2), 181–207 (2003)

    Article  MATH  Google Scholar 

  17. Kuncheva, L.I.: That elusive diversity in classifier ensembles. In: Proc. of Iberian Conference on Pattern Recognition and Image Analysis, pp. 1126–1138 (2003)

    Google Scholar 

  18. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of AI Research 11, 169–198 (1999)

    MATH  Google Scholar 

  19. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  20. Ranawana, R.: Multi-Classifier Systems - Review and a Roadmap for Developers. International Journal of Hybrid Intelligent Systems 3(1), 35–61 (2006)

    Article  MATH  Google Scholar 

  21. Schapire, R.E.: The boosting approach to machine learning: An overview. In: MSRI Workshop on Nonlinear Estimation and Classification (2002)

    Google Scholar 

  22. Skurichina, M., Kuncheva, L., Duin, R.P.: Bagging and Boosting for the Nearest Mean Classifier: Effects of Sample Size on Diversity and Accuracy. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 62–71. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Valentini, G., Masulli, F.: Ensembles of Learning Machines. In: Marinaro, M., Tagliaferri, R. (eds.) WIRN 2002. LNCS, vol. 2486, pp. 3–22. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  25. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 Algorithms in Data Mining. Knowledge and Information Systems 14(1), 1–37 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hsu, KW., Srivastava, J. (2009). Diversity in Combinations of Heterogeneous Classifiers. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science(), vol 5476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01307-2_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01307-2_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01306-5

  • Online ISBN: 978-3-642-01307-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics