Abstract
In this paper, we introduce the use of combinations of heterogeneous classifiers to achieve better diversity. Conducting theoretical and empirical analyses of the diversity of combinations of heterogeneous classifiers, we study the relationship between heterogeneity and diversity. On the one hand, the theoretical analysis serves as a foundation for employing heterogeneous classifiers in Multi-Classifier Systems or ensembles. On the other hand, experimental results provide empirical evidence. We consider synthetic as well as real data sets, utilize classification algorithms that are essentially different, and employ various popular diversity measures for evaluation. Two interesting observations will contribute to the future design of Multi-Classifier Systems and ensemble techniques. First, the diversity among heterogeneous classifiers is higher than that among homogeneous ones, and hence using heterogeneous classifiers to construct classifier combinations would increase the diversity. Second, the heterogeneity primarily results from different classification algorithms rather than the same algorithm with different parameters.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)
Alkoot, F.M., Kittler, J.: Multiple expert system design by combined feature selection and probability level fusion. In: Proc. of the 3rd International Conference on Information Fusion, vol. 2, pp. THC5/9–THC516 (2000)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Bahler, D., Navarro, L.: Methods for Combining Heterogeneous Sets of Classifiers. In: The 17th National Conference on Artificial Intelligence, Workshop on New Research Problems for Machine Learning (2000)
Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A New Ensemble Diversity Measure Applied to Thinning Ensembles. In: International Workshop on Multiple Classifier Systems, pp. 306–316 (2003)
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorization. Information Fusion 6(1), 5–20 (2005)
Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proc. of the 13th International Conference on Machine Learning, pp. 148–156 (1996)
Ghosh, J.: Multiclassifier Systems: Back to the Future. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 1–15. Springer, Heidelberg (2002)
Hettich, S., Bay, S.D.: The UCI KDD Archive. University of California, Department of Information and Computer Science, Irvine, CA (1999), http://kdd.ics.uci.edu
John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: The 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)
Kuncheva, L.I., Whitaker, C.J.: Ten measures of diversity in classifier ensembles: limits for two classifiers. In: A DERA/IEE Workshop on Intelligent Sensor Processing, pp. 10/1–10/10 (2001)
Kuncheva, L.I., Skurichina, M., Duin, R.P.W.: An experimental study on diversity for bagging and boosting with linear classifiers. Information Fusion 3(4), 245–258 (2002)
Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning 51(2), 181–207 (2003)
Kuncheva, L.I.: That elusive diversity in classifier ensembles. In: Proc. of Iberian Conference on Pattern Recognition and Image Analysis, pp. 1126–1138 (2003)
Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of AI Research 11, 169–198 (1999)
Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)
Ranawana, R.: Multi-Classifier Systems - Review and a Roadmap for Developers. International Journal of Hybrid Intelligent Systems 3(1), 35–61 (2006)
Schapire, R.E.: The boosting approach to machine learning: An overview. In: MSRI Workshop on Nonlinear Estimation and Classification (2002)
Skurichina, M., Kuncheva, L., Duin, R.P.: Bagging and Boosting for the Nearest Mean Classifier: Effects of Sample Size on Diversity and Accuracy. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 62–71. Springer, Heidelberg (2002)
Valentini, G., Masulli, F.: Ensembles of Learning Machines. In: Marinaro, M., Tagliaferri, R. (eds.) WIRN 2002. LNCS, vol. 2486, pp. 3–22. Springer, Heidelberg (2002)
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 Algorithms in Data Mining. Knowledge and Information Systems 14(1), 1–37 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hsu, KW., Srivastava, J. (2009). Diversity in Combinations of Heterogeneous Classifiers. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science(), vol 5476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01307-2_97
Download citation
DOI: https://doi.org/10.1007/978-3-642-01307-2_97
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01306-5
Online ISBN: 978-3-642-01307-2
eBook Packages: Computer ScienceComputer Science (R0)