Abstract
State-of-the-art image denoising algorithms attempt to recover natural image signals from their noisy observations, such that the statistics of the denoised image follow the statistical regularities of natural images. One aspect generally missing in these approaches is that the properties of the residual image (defined as the difference between the noisy observation and the denoised image) have not been well exploited. Here we demonstrate the usefulness of residual images in image denoising. In particular, we show that well-known full-reference image quality measures such as the mean-squared-error and the structural similarity index can be estimated from the residual image without the reference image. We also propose a procedure that has the potential to enhance the image quality of given image denoising algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4(2), 490–530 (2005)
Candès, E., Demanet, L., Ying, L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Comm. Pure Appl. Math. 57(2), 219–266 (2004)
Chuang, K.-S., Huang, H.K.: Assessment of noise in a digital image using the join-count statistic and the moran test. Phys. Med. Bid. 37(2), 357–369 (1992)
Coifman, R.R., Donoho, D.L.: Translation-Invariant Denoising. In: Coifman, R.R., Donoho, D.L. (eds.) Wavelets and Statistics, pp. 125–150. Springer, New York (1995)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)
Donoho, D.L., Johnstone, I.M.: Ideal spatial adaption via wavelet shrinkage. Biometrika 81, 425–455 (1994)
Jeng, F.-C., Woods, J.W.: Inhomogeneous gaussian image models for estimation and restoration. IEEE Trans. Acoust., Speech, Signal Proc. 36(8), 1305–1312 (1988)
Lee, J.-S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. on Pattern Analysis and Machine Intelligence 2(2), 165–168 (1980)
Malgouyres, F.: A noise selection approach of image restoration. In: SPIE, International Conference on Wavelets IX, vol. 4478, pp. 34–41 (2001)
Murtagh, F., Starck, J.-L., Louys, M.: Very-high-quality image compression based on noise modeling. Int. J. Imag. Syst. Tech. 9(11), 38–45 (1998)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. SIAM Multiscale Model. and Simu. 4, 460–489 (2005)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. on Image Proc. 12(11), 1338–1351 (2003)
Rudin, R., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)
Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Transactions on Graphics (SIGGRAPH) 27(3), 1–10 (2008)
Wang, Z., Bovik, A.C., Skeikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. on Image Proc. 13(4), 600–612 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brunet, D., Vrscay, E.R., Wang, Z. (2009). The Use of Residuals in Image Denoising. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-02611-9_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02610-2
Online ISBN: 978-3-642-02611-9
eBook Packages: Computer ScienceComputer Science (R0)