Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Use of Residuals in Image Denoising

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

Abstract

State-of-the-art image denoising algorithms attempt to recover natural image signals from their noisy observations, such that the statistics of the denoised image follow the statistical regularities of natural images. One aspect generally missing in these approaches is that the properties of the residual image (defined as the difference between the noisy observation and the denoised image) have not been well exploited. Here we demonstrate the usefulness of residual images in image denoising. In particular, we show that well-known full-reference image quality measures such as the mean-squared-error and the structural similarity index can be estimated from the residual image without the reference image. We also propose a procedure that has the potential to enhance the image quality of given image denoising algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès, E., Demanet, L., Ying, L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Comm. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chuang, K.-S., Huang, H.K.: Assessment of noise in a digital image using the join-count statistic and the moran test. Phys. Med. Bid. 37(2), 357–369 (1992)

    Article  Google Scholar 

  4. Coifman, R.R., Donoho, D.L.: Translation-Invariant Denoising. In: Coifman, R.R., Donoho, D.L. (eds.) Wavelets and Statistics, pp. 125–150. Springer, New York (1995)

    Chapter  Google Scholar 

  5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  6. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaption via wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jeng, F.-C., Woods, J.W.: Inhomogeneous gaussian image models for estimation and restoration. IEEE Trans. Acoust., Speech, Signal Proc. 36(8), 1305–1312 (1988)

    Article  MATH  Google Scholar 

  8. Lee, J.-S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. on Pattern Analysis and Machine Intelligence 2(2), 165–168 (1980)

    Article  MathSciNet  Google Scholar 

  9. Malgouyres, F.: A noise selection approach of image restoration. In: SPIE, International Conference on Wavelets IX, vol. 4478, pp. 34–41 (2001)

    Google Scholar 

  10. Murtagh, F., Starck, J.-L., Louys, M.: Very-high-quality image compression based on noise modeling. Int. J. Imag. Syst. Tech. 9(11), 38–45 (1998)

    Article  Google Scholar 

  11. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. SIAM Multiscale Model. and Simu. 4, 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  13. Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. on Image Proc. 12(11), 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rudin, R., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Transactions on Graphics (SIGGRAPH) 27(3), 1–10 (2008)

    Article  Google Scholar 

  16. Wang, Z., Bovik, A.C., Skeikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. on Image Proc. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brunet, D., Vrscay, E.R., Wang, Z. (2009). The Use of Residuals in Image Denoising. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics