Abstract
Today, many industrial companies must face problems raised by maintenance. In particular, the anomaly detection problem is probably one of the most challenging. In this paper we focus on the railway maintenance task and propose to automatically detect anomalies in order to predict in advance potential failures. We first address the problem of characterizing normal behavior. In order to extract interesting patterns, we have developed a method to take into account the contextual criteria associated to railway data (itinerary, weather conditions, etc.). We then measure the compliance of new data, according to extracted knowledge, and provide information about the seriousness and possible causes of a detected anomaly.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rodrigues, P.P., Gama, J.: Online prediction of streaming sensor data. In: Gama, J., Roure, J., Auguilar-Ruiz, J.S. (eds.) Proceedings of the 3rd International Workshop on Knowledge Discovery from Data Streams (IWKDDS 2006), in conjuntion with the 23rd International Conference on Machine Learning (2006)
Yairi, T., Kato, Y., Hori, K.: Fault detection by mining association rules from house-keeping data. In: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (2001)
Halatchev, M., Gruenwald, L.: Estimating missing values in related sensor data streams. In: Haritsa, J.R., Vijayaraman, T.M. (eds.) Proceedings of the 11th International Conference on Management of Data (COMAD 2005). Computer Society of India (2005)
Chong, S.K., Krishnaswamy, S., Loke, S.W., Gaben, M.M.: Using association rules for energy conservation in wireless sensor networks. In: SAC 2008: Proceedings of the 2008 ACM symposium on Applied computing. ACM, New York (2008)
Ma, X., Yang, D., Tang, S., Luo, Q., Zhang, D., Li, S.: Online mining in sensor networks. In: Jin, H., Gao, G.R., Xu, Z., Chen, H. (eds.) NPC 2004. LNCS, vol. 3222, pp. 544–550. Springer, Heidelberg (2004)
Guralnik, V., Haigh, K.Z.: Learning models of human behaviour with sequential patterns. In: Proceedings of the AAAI 2002 workshop “Automation as Caregiver” (2002)
Cook, D.J., Youngblood, M., Heierman III, E.O., Gopalratnam, K., Rao, S., Litvin, A., Khawaja, F.: Mavhome: An agent-based smart home. In: PERCOM 2003: Proceedings of the First IEEE International Conference on Pervasive Computing and Communications. IEEE Computer Society Press, Los Alamitos (2003)
Wu, P.H., Peng, W.C., Chen, M.S.: Mining sequential alarm patterns in a telecommunication database. In: Jonker, W. (ed.) VLDB-WS 2001 and DBTel 2001. LNCS, vol. 2209, p. 37. Springer, Heidelberg (2001)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.S.P. (eds.) Eleventh International Conference on Data Engineering. IEEE Computer Society Press, Los Alamitos (1995)
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2) (1993)
Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996, vol. 1057. Springer, Heidelberg (1996)
Masseglia, F., Poncelet, P., Teisseire, M.: Efficient mining of sequential patterns with time constraints: Reducing the combinations. Expert Systems with Applications 36(2, Part 2) (2009)
Masseglia, F., Cathala, F., Poncelet, P.: The psp approach for mining sequential patterns. In: Żytkow, J.M., Quafafou, M. (eds.) PKDD 1998. LNCS, vol. 1510. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rabatel, J., Bringay, S., Poncelet, P. (2009). SO_MAD: SensOr Mining for Anomaly Detection in Railway Data. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2009. Lecture Notes in Computer Science(), vol 5633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03067-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-03067-3_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03066-6
Online ISBN: 978-3-642-03067-3
eBook Packages: Computer ScienceComputer Science (R0)