Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Computational Geometry of Comparing Shapes

  • Chapter
Efficient Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5760))

  • 2687 Accesses

Abstract

This article is a survey on methods from computational geometry for comparing shapes that we developed within our work group at Freie Universität Berlin. In particular, we will present the ideas and complexity considerations for the computation of two distance measures, the Hausdorff distance and the Fréchet distance. Whereas the former is easier to compute, the latter better captures the similarity of shapes as perceived by human observers. We will consider shapes modelled by curves in the plane as well as surfaces in three-dimensional space. Especially, the Fréchet distance of surfaces seems computationally intractable and is of yet not even known to be computable. At least the decision problem is shown to be recursively enumerable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H., Scharf, L., Scholz, S.: Probabilistic matching and resemblance evaluation of shapes in trademark images. In: Proceedings of the ACM International Conference on Image and Video Retrieval (CIVR), Amsterdam, The Netherlands, pp. 533–540 (2007)

    Google Scholar 

  2. Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13, 251–266 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti Circ. Mat. Palermo 22, 1–74 (1906)

    Article  MATH  Google Scholar 

  4. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Internat. J. Comput. Geom. Appl. 5, 75–91 (1995)

    Article  MATH  Google Scholar 

  5. Gajentaan, A., Overmars, M.H.: On a class of O(n 2) problems in computational geometry. Comput. Geom. 5, 165–185 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alt, H., Braß, P., Godau, M., Knauer, C., Wenk, C.: Computing the Hausdorff distance of geometric patterns and shapes. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry. The Goodman–Pollack Festschrift. Algorithms and Combinatorics, vol. 25, pp. 65–76. Springer, Berlin (2003); Special Issue: The Goodman-Pollack-Festschrift (Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.)

    Chapter  Google Scholar 

  7. Fréchet, M.: Sur la distance de deux surfaces. Ann. Soc. Polonaise Math. 3, 4–19 (1924)

    MATH  Google Scholar 

  8. Godau, M.: On the complexity of measuring the similarity between geometric objects in higher dimensions. PhD thesis, Freie Universität Berlin, Germany (1998), http://www.diss.fu-berlin.de/1999/1/indexe.html

  9. Tarski, A.: A decision method for elementary algebra and geometry. Santa Monica CA: RAND Corp. (1948)

    Google Scholar 

  10. Buchin, M.: On the Computability of the Frechet Distance Between Triangulated Surfaces. PhD thesis, Freie Universität Berlin, Germany (2007), http://www.diss.fu-berlin.de/

  11. Alt, H., Buchin, M.: Can we compute the similarity between surfaces? J. on Disc. and Comput. Geom. (to appear), http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0703011

  12. Weihrauch, K., Zheng, X.: Computability on continuous, lower semi-continuous, and upper semi-continuous real functions. Theoretical Computer Science 234, 109–133 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moise, E.E.: Geometric Topology in Dimensions 2 and 3. Graduate Texts in Mathematics, vol. 47. Springer, Heidelberg (1977)

    MATH  Google Scholar 

  14. Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the fréchet distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 63–74. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Alt, H., Scharf, L.: Shape matching by random sampling. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 381–393. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Sharon, E., Mumford, D.: 2d-shape analysis using conformal mapping. Int. J. Comput. Vision 70(1), 55–75 (2006)

    Article  Google Scholar 

  17. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discrete & Computational Geometry 3, 237–256 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alt, H. (2009). The Computational Geometry of Comparing Shapes. In: Albers, S., Alt, H., Näher, S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03456-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03455-8

  • Online ISBN: 978-3-642-03456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics