Abstract
This article is a survey on methods from computational geometry for comparing shapes that we developed within our work group at Freie Universität Berlin. In particular, we will present the ideas and complexity considerations for the computation of two distance measures, the Hausdorff distance and the Fréchet distance. Whereas the former is easier to compute, the latter better captures the similarity of shapes as perceived by human observers. We will consider shapes modelled by curves in the plane as well as surfaces in three-dimensional space. Especially, the Fréchet distance of surfaces seems computationally intractable and is of yet not even known to be computable. At least the decision problem is shown to be recursively enumerable.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alt, H., Scharf, L., Scholz, S.: Probabilistic matching and resemblance evaluation of shapes in trademark images. In: Proceedings of the ACM International Conference on Image and Video Retrieval (CIVR), Amsterdam, The Netherlands, pp. 533–540 (2007)
Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13, 251–266 (1995)
Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti Circ. Mat. Palermo 22, 1–74 (1906)
Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Internat. J. Comput. Geom. Appl. 5, 75–91 (1995)
Gajentaan, A., Overmars, M.H.: On a class of O(n 2) problems in computational geometry. Comput. Geom. 5, 165–185 (1995)
Alt, H., Braß, P., Godau, M., Knauer, C., Wenk, C.: Computing the Hausdorff distance of geometric patterns and shapes. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry. The Goodman–Pollack Festschrift. Algorithms and Combinatorics, vol. 25, pp. 65–76. Springer, Berlin (2003); Special Issue: The Goodman-Pollack-Festschrift (Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.)
Fréchet, M.: Sur la distance de deux surfaces. Ann. Soc. Polonaise Math. 3, 4–19 (1924)
Godau, M.: On the complexity of measuring the similarity between geometric objects in higher dimensions. PhD thesis, Freie Universität Berlin, Germany (1998), http://www.diss.fu-berlin.de/1999/1/indexe.html
Tarski, A.: A decision method for elementary algebra and geometry. Santa Monica CA: RAND Corp. (1948)
Buchin, M.: On the Computability of the Frechet Distance Between Triangulated Surfaces. PhD thesis, Freie Universität Berlin, Germany (2007), http://www.diss.fu-berlin.de/
Alt, H., Buchin, M.: Can we compute the similarity between surfaces? J. on Disc. and Comput. Geom. (to appear), http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0703011
Weihrauch, K., Zheng, X.: Computability on continuous, lower semi-continuous, and upper semi-continuous real functions. Theoretical Computer Science 234, 109–133 (2000)
Moise, E.E.: Geometric Topology in Dimensions 2 and 3. Graduate Texts in Mathematics, vol. 47. Springer, Heidelberg (1977)
Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the fréchet distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 63–74. Springer, Heidelberg (2001)
Alt, H., Scharf, L.: Shape matching by random sampling. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 381–393. Springer, Heidelberg (2009)
Sharon, E., Mumford, D.: 2d-shape analysis using conformal mapping. Int. J. Comput. Vision 70(1), 55–75 (2006)
Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discrete & Computational Geometry 3, 237–256 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Alt, H. (2009). The Computational Geometry of Comparing Shapes. In: Albers, S., Alt, H., Näher, S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-03456-5_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03455-8
Online ISBN: 978-3-642-03456-5
eBook Packages: Computer ScienceComputer Science (R0)