Abstract
We study bisimulation and minimization for weighted automata, relying on a geometrical representation of the model, linear weighted automata (lwa). In a lwa, the state-space of the automaton is represented by a vector space, and the transitions and weighting maps by linear morphisms over this vector space. Weighted bisimulations are represented by sub-spaces that are invariant under the transition morphisms. We show that the largest bisimulation coincides with weighted language equivalence, can be computed by a geometrical version of partition refinement and that the corresponding quotient gives rise to the minimal weighted-language equivalence automaton. Relations to Larsen and Skou’s probabilistic bisimulation and to classical results in Automata Theory are also discussed.
Work partially supported by eu within the fet-GC2 initiative, project Sensoria.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding Bisimilarity and Similarity for Probabilistic Processes. Journal of Computer and System Sciences 60(1), 187–231 (2000)
Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monograph Series. Springer, Heidelberg (1988); New edition, Noncommutative Rational Series With Applications (2008), http://www-igm.univ-mlv.fr/~berstel/LivreSeries/LivreSeries.html
Boreale, M.: Weighted bisimulations in linear algebraic form. Full version of the present paper (2009), http://rap.dsi.unifi.it/~boreale/papers/WBG.pdf
Buchholz, P.: Exact Performance Equivalence: An Equivalence Relation for Stochastic Automata. Theoretical Computer Science 215(1-2), 263–287 (1999)
Buchholz, P.: Bisimulation relations for weighted automata. Theoretical Computer Science 393(1-3), 109–123 (2008)
Buchholz, P., Kemper, P.: Quantifying the dynamic behavior of process algebras. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 184–199. Springer, Heidelberg (2001)
Cardon, A., Crochemore, M.: Determination de la representation standard d’une serie reconnaissable. RAIRO Theor. Informatics and Appl. 14, 371–379 (1980)
Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Characterising testing preorders for finite probabilistic processes. Logical Methods in Computer Science 4(4:4) (2008)
De Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theoretical Compututer Science 34, 83–133 (1984)
Flouret, M., Laugerotte, E.: Noncommutative minimization algorithms. Inform. Process. Lett. 64, 123–126 (1997)
van Glabbeek, R.J., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reactive, Generative, and Stratified Models of Probabilistic Processes. In: LICS 1990, pp. 130–141 (1990)
Jonsson, B., Larsen, K.G.: Specification and Refinement of Probabilistic Processes. In: LICS 1991, pp. 266–277 (1991)
Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)
Lang, S.A.: Introduction to Linear Algebra, 2/e. Springer, Heidelberg (1997)
Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Information and Compututation 94(1), 1–28 (1991)
Meyer, A.R., Stockmeyer, L.J.: Word problems requiring exponential time. In: STOC 1973, pp. 1–9 (1973)
Milner, R.: A Calculus of Communicating Systems. Prentice-Hall, Englewood Cliffs (1989)
Park, D.: Concurrency and Automata on Infinite Sequences. Theoretical Computer Science, 167–183 (1981)
Rutten, J.J.M.M.: Coinductive counting with weighted automata. Journal of Automata, Languages and Combinatorics 8(2), 319–352 (2003)
Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theoretical Computer Science 308(1-3), 1–53 (2003)
Rutten, J.J.M.M.: Rational streams coalgebraically. Logical Methods in Computer Science 4(3) (2008)
Schützenberger, M.P.: On the Definition of a Family of Automata. Information and Control 4(2-3), 245–270 (1961)
Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, MIT (1995)
Stark, E.W.: On Behavior Equivalence for Probabilistic I/O Automata and its Relationship to Probabilistic Bisimulation. Journal of Automata, Languages and Combinatorics 8(2), 361–395 (2003)
Stark, E.W., Cleaveland, R., Smolka, S.A.: Probabilistic I/O Automata: Theories of Two Equivalences. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 343–357. Springer, Heidelberg (2006)
Wu, S.-H., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O automata. Theoretical Computer Science 176(1-2), 1–38 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boreale, M. (2009). Weighted Bisimulation in Linear Algebraic Form. In: Bravetti, M., Zavattaro, G. (eds) CONCUR 2009 - Concurrency Theory. CONCUR 2009. Lecture Notes in Computer Science, vol 5710. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04081-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-04081-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04080-1
Online ISBN: 978-3-642-04081-8
eBook Packages: Computer ScienceComputer Science (R0)