Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Weighted Bisimulation in Linear Algebraic Form

  • Conference paper
CONCUR 2009 - Concurrency Theory (CONCUR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5710))

Included in the following conference series:

Abstract

We study bisimulation and minimization for weighted automata, relying on a geometrical representation of the model, linear weighted automata (lwa). In a lwa, the state-space of the automaton is represented by a vector space, and the transitions and weighting maps by linear morphisms over this vector space. Weighted bisimulations are represented by sub-spaces that are invariant under the transition morphisms. We show that the largest bisimulation coincides with weighted language equivalence, can be computed by a geometrical version of partition refinement and that the corresponding quotient gives rise to the minimal weighted-language equivalence automaton. Relations to Larsen and Skou’s probabilistic bisimulation and to classical results in Automata Theory are also discussed.

Work partially supported by eu within the fet-GC2 initiative, project Sensoria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding Bisimilarity and Similarity for Probabilistic Processes. Journal of Computer and System Sciences 60(1), 187–231 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monograph Series. Springer, Heidelberg (1988); New edition, Noncommutative Rational Series With Applications (2008), http://www-igm.univ-mlv.fr/~berstel/LivreSeries/LivreSeries.html

    Book  MATH  Google Scholar 

  3. Boreale, M.: Weighted bisimulations in linear algebraic form. Full version of the present paper (2009), http://rap.dsi.unifi.it/~boreale/papers/WBG.pdf

  4. Buchholz, P.: Exact Performance Equivalence: An Equivalence Relation for Stochastic Automata. Theoretical Computer Science 215(1-2), 263–287 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchholz, P.: Bisimulation relations for weighted automata. Theoretical Computer Science 393(1-3), 109–123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buchholz, P., Kemper, P.: Quantifying the dynamic behavior of process algebras. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 184–199. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Cardon, A., Crochemore, M.: Determination de la representation standard d’une serie reconnaissable. RAIRO Theor. Informatics and Appl. 14, 371–379 (1980)

    MATH  Google Scholar 

  8. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Characterising testing preorders for finite probabilistic processes. Logical Methods in Computer Science 4(4:4) (2008)

    Google Scholar 

  9. De Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theoretical Compututer Science 34, 83–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flouret, M., Laugerotte, E.: Noncommutative minimization algorithms. Inform. Process. Lett. 64, 123–126 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. van Glabbeek, R.J., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reactive, Generative, and Stratified Models of Probabilistic Processes. In: LICS 1990, pp. 130–141 (1990)

    Google Scholar 

  12. Jonsson, B., Larsen, K.G.: Specification and Refinement of Probabilistic Processes. In: LICS 1991, pp. 266–277 (1991)

    Google Scholar 

  13. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  14. Lang, S.A.: Introduction to Linear Algebra, 2/e. Springer, Heidelberg (1997)

    Google Scholar 

  15. Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Information and Compututation 94(1), 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meyer, A.R., Stockmeyer, L.J.: Word problems requiring exponential time. In: STOC 1973, pp. 1–9 (1973)

    Google Scholar 

  17. Milner, R.: A Calculus of Communicating Systems. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  18. Park, D.: Concurrency and Automata on Infinite Sequences. Theoretical Computer Science, 167–183 (1981)

    Google Scholar 

  19. Rutten, J.J.M.M.: Coinductive counting with weighted automata. Journal of Automata, Languages and Combinatorics 8(2), 319–352 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theoretical Computer Science 308(1-3), 1–53 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rutten, J.J.M.M.: Rational streams coalgebraically. Logical Methods in Computer Science 4(3) (2008)

    Google Scholar 

  22. Schützenberger, M.P.: On the Definition of a Family of Automata. Information and Control 4(2-3), 245–270 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  23. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, MIT (1995)

    Google Scholar 

  24. Stark, E.W.: On Behavior Equivalence for Probabilistic I/O Automata and its Relationship to Probabilistic Bisimulation. Journal of Automata, Languages and Combinatorics 8(2), 361–395 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Stark, E.W., Cleaveland, R., Smolka, S.A.: Probabilistic I/O Automata: Theories of Two Equivalences. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 343–357. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Wu, S.-H., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O automata. Theoretical Computer Science 176(1-2), 1–38 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boreale, M. (2009). Weighted Bisimulation in Linear Algebraic Form. In: Bravetti, M., Zavattaro, G. (eds) CONCUR 2009 - Concurrency Theory. CONCUR 2009. Lecture Notes in Computer Science, vol 5710. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04081-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04081-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04080-1

  • Online ISBN: 978-3-642-04081-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics