Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simulation and Information: Quantifying over Epistemic Events

  • Conference paper
Knowledge Representation for Agents and Multi-Agent Systems (KRAMAS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5605))

Abstract

We introduce a multi-agent logic of knowledge with time where stands for “there is an informative event after which φ.” Formula is true in a model iff it is true in all its refinements (i.e., atoms and back are satisfied; the dual of simulation). The logic is almost normal, and positive knowledge is preserved. The meaning of is also “after the agents become aware of new factual information, φ is true,” and on finite models it is also “there is an event model (M,s) after which φ.” The former provides a correspondence with bisimulation quantifiers in a setting with epistemic operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139, 165–224 (2004); Knowledge, Rationality & Action 1–60

    Article  MATH  MathSciNet  Google Scholar 

  2. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Heidelberg (2007)

    Google Scholar 

  3. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Information and Computation 204(11), 1620–1662 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hoshi, T.: The logic of communication graphs for group communication and the dynamic epistemic logic with a future operator. Philosophy Department, Stanford University (2006)

    Google Scholar 

  5. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., Lima, T.D.: What can we achieve by arbitrary announcements? A dynamic take on Fitch’s knowability. In: Samet, D. (ed.) Proceedings of TARK XI, Louvain-la-Neuve, Belgium, pp. 42–51. Presses Universitaires de Louvain (2007)

    Google Scholar 

  6. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., Lima, T.D.: ‘knowable’ as ‘known after an announcement’. Review of Symbolic Logic 1(3), 305–334 (2008)

    Article  Google Scholar 

  7. van Benthem, J., Gerbrandy, J., Pacuit, E.: Merging frameworks for interaction: DEL and ETL. In: Samet, D. (ed.) Proceedings of TARK 2007, pp. 72–81 (2007)

    Google Scholar 

  8. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  9. Lomuscio, A., Ryan, M.: An algorithmic approach to knowledge evolution. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM) 13(2) (1998); Special issue on Temporal Logic in Engineering

    Google Scholar 

  10. Aczel, P.: Non-Well-Founded Sets. CSLI Lecture Notes, vol. 14. CSLI Publications, Stanford (1988)

    MATH  Google Scholar 

  11. Visser, A.: Bisimulations, model descriptions and propositional quantifiers. Logic Group Preprint Series 161, Department of Philosophy, Utrecht University (1996)

    Google Scholar 

  12. Hollenberg, M.: Logic and bisimulation. PhD thesis, University of Utrecht (1998)

    Google Scholar 

  13. French, T.: Bisimulation quantifiers for modal logic. PhD thesis, University of Western Australia (2006)

    Google Scholar 

  14. van Benthem, J., Ikegami, D.: Modal fixed-point logic and changing models. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 146–165. Springer, Heidelberg (2008); Also available as ILLC Prepublication Series PP-2008-19

    Chapter  Google Scholar 

  15. French, T., van Ditmarsch, H.: Undecidability for arbitrary public announcement logic. In: Proceedings of the seventh conference “Advances in Modal Logic”, London, pp. 23–42. College Publications (2008)

    Google Scholar 

  16. Fagin, R., Halpern, J.: Belief, awareness, and limited reasoning. Artificial Intelligence 34(1), 39–76 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Ditmarsch, H., French, T. (2009). Simulation and Information: Quantifying over Epistemic Events. In: Meyer, JJ.C., Broersen, J. (eds) Knowledge Representation for Agents and Multi-Agent Systems. KRAMAS 2008. Lecture Notes in Computer Science(), vol 5605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05301-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05301-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05300-9

  • Online ISBN: 978-3-642-05301-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics