Summary
This work introduces a mathematical model for laser cutting which involves two coupled nonlinear partial differential equations. The model will be investigated by linear stability analysis to study the occurence of ripple formations at a cutting surface. We define a measurement for the roughness of the cutting surface and give a method for minimizing the roughness with respect to process parameters. A numerical solution of this nonlinear optimization problem will be presented and compared with the results of the linear stability analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Colombo RM, Mercier M, Rosini MD (2009) Stability estimates on general scalar balance laws. C R Acad Sci Paris, Ser I 347
Fourer R, Gay DM, Kernighan (1990) A Modeling Language for Mathematical Programming. Management Science 36:519554
Friedrich R, Radons G, Ditzinger T, Henning A (2000) Ripple Formation through an Interface Instability from Moving Growth and Erosion Sources. Phys Rev Lett 85:4884-4887
Lamé G, Clapeyron BD (1831) Mémoire sur la solidification par refroidissement d’un globe liquide. Ann Chimie Physique, 47:250-256
Lax PD, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13:217-237
Kevorkian J (2000) Partial Differential Equations: Analytical Solution Techniques. 2nd Edition. Springer, New York
Nießen M (2005) Numerische Modellierung freier Randwertaufgaben und Anwendung auf das Laserschneiden. PhD thesis, RWTH Aachen University
Schulz W (2003) Die Dynamik des thermischen Abtrags mit Grenzschichtcharakter. Aachen, Shaker-Verlag, Habilitation thesis, RWTH Aachen University
Schulz W, Nießen M, Eppelt U, Kowalick K (2009) Simulation of Laser Cutting. In: Dowden JM (ed) The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology. Springer Series in Materials Science 119
Schulz W, Kostrykin V, Nießen M, Michel J, Petring D, Kreutz EW, Poprawe R (1999) Dynamics of Ripple Formation and Melt Flow in Laser Beam Cutting. J Phys D: Appl. Phys. 32:1219-1228
Theißen K (2006) Optimale Steuerprozesse unter partiellen Differentialgleichungs- Restriktionen mit linear eingehender Steuerfunktion. PhD thesis, University of Münster
Vossen G, Schulz W (2009) Multiple Scale Methods for Nonlinear Stability Analysis in Laser Cutting Processes. Technical Report, RWTH Aachen. Online: http://www.nld.rwth-aachen.de/
Wächter A, Biegler LT (2006) On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming 106(1):25-57
Acknowledgement
The research related to this paper is supported by the German Research Foundation DFG as part of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” at RWTH Aachen University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer -Verlag Berlin Heidelberg
About this paper
Cite this paper
Vossen, G., Schüttler, J., Nießen, M. (2010). Optimization of Partial Differential Equations for Minimizing the Roughness of Laser Cutting Surfaces. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds) Recent Advances in Optimization and its Applications in Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12598-0_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-12598-0_46
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12597-3
Online ISBN: 978-3-642-12598-0
eBook Packages: EngineeringEngineering (R0)