Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimization of Partial Differential Equations for Minimizing the Roughness of Laser Cutting Surfaces

  • Conference paper
  • First Online:
Recent Advances in Optimization and its Applications in Engineering

Summary

This work introduces a mathematical model for laser cutting which involves two coupled nonlinear partial differential equations. The model will be investigated by linear stability analysis to study the occurence of ripple formations at a cutting surface. We define a measurement for the roughness of the cutting surface and give a method for minimizing the roughness with respect to process parameters. A numerical solution of this nonlinear optimization problem will be presented and compared with the results of the linear stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Colombo RM, Mercier M, Rosini MD (2009) Stability estimates on general scalar balance laws. C R Acad Sci Paris, Ser I 347

    Google Scholar 

  2. Fourer R, Gay DM, Kernighan (1990) A Modeling Language for Mathematical Programming. Management Science 36:519554

    Article  Google Scholar 

  3. Friedrich R, Radons G, Ditzinger T, Henning A (2000) Ripple Formation through an Interface Instability from Moving Growth and Erosion Sources. Phys Rev Lett 85:4884-4887

    Article  Google Scholar 

  4. Lamé G, Clapeyron BD (1831) Mémoire sur la solidification par refroidissement d’un globe liquide. Ann Chimie Physique, 47:250-256

    Google Scholar 

  5. Lax PD, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13:217-237

    Article  MATH  MathSciNet  Google Scholar 

  6. Kevorkian J (2000) Partial Differential Equations: Analytical Solution Techniques. 2nd Edition. Springer, New York

    MATH  Google Scholar 

  7. Nießen M (2005) Numerische Modellierung freier Randwertaufgaben und Anwendung auf das Laserschneiden. PhD thesis, RWTH Aachen University

    Google Scholar 

  8. Schulz W (2003) Die Dynamik des thermischen Abtrags mit Grenzschichtcharakter. Aachen, Shaker-Verlag, Habilitation thesis, RWTH Aachen University

    Google Scholar 

  9. Schulz W, Nießen M, Eppelt U, Kowalick K (2009) Simulation of Laser Cutting. In: Dowden JM (ed) The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology. Springer Series in Materials Science 119

    Google Scholar 

  10. Schulz W, Kostrykin V, Nießen M, Michel J, Petring D, Kreutz EW, Poprawe R (1999) Dynamics of Ripple Formation and Melt Flow in Laser Beam Cutting. J Phys D: Appl. Phys. 32:1219-1228

    Article  Google Scholar 

  11. Theißen K (2006) Optimale Steuerprozesse unter partiellen Differentialgleichungs- Restriktionen mit linear eingehender Steuerfunktion. PhD thesis, University of Münster

    Google Scholar 

  12. Vossen G, Schulz W (2009) Multiple Scale Methods for Nonlinear Stability Analysis in Laser Cutting Processes. Technical Report, RWTH Aachen. Online: http://www.nld.rwth-aachen.de/

  13. Wächter A, Biegler LT (2006) On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming 106(1):25-57

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

The research related to this paper is supported by the German Research Foundation DFG as part of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” at RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Vossen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer -Verlag Berlin Heidelberg

About this paper

Cite this paper

Vossen, G., Schüttler, J., Nießen, M. (2010). Optimization of Partial Differential Equations for Minimizing the Roughness of Laser Cutting Surfaces. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds) Recent Advances in Optimization and its Applications in Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12598-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12598-0_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12597-3

  • Online ISBN: 978-3-642-12598-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics